000 25596cam a2205761Ii 4500
001 161100
008 090828s20112011mnua b 001 0 eng
020 _a053847565x (paperback)
020 _a0538475676 (Student CD)
020 _a9780538475655 (paperback)
040 _aMEF
_beng
_erda
049 _aTR-IsMEF
050 0 0 _aHD30.25
_b.A53 2011
245 0 3 _aAn introduction to management science :
_bquantitative approaches to decision making /
_cDavid R. Anderson, University of Cincinnati, Dennis J. Sweeney, University of Cincinnati, Thomas A. Williams, Rochester Institute of Technology, Kipp Martin, University of Chicago.
250 _aThirteenth edition, International edition.
264 1 _aMason, OH :
_bCengage South-Western,
_c2011.
264 4 _a©2011
300 _axxx, 816 pages :
_billustrations ;
_c27 cm. +
_e1 CD-ROM (4 3/4 in.)
336 _atext
_2rdacontent
336 _atwo-dimensional moving image
_2rdacontent
337 _aunmediated
_2rdamedia
337 _acomputer
_2rdamedia
338 _avolume
_2rdacarrier
338 _acomputer disc
_2rdacarrier
504 _aIncludes bibliographical references and index.
650 0 _aManagement science.
700 1 _aAnderson, David R.
_q(David Ray),
_d1941-,
_eauthor.
700 1 _aSweeney, Dennis J.,
_eauthor.
700 1 _aWilliams, Thomas A.,
_eauthor.
700 1 _aMartin, Kipp,
_eauthor.
900 _aMEF Üniversitesi Kütüphane katalog kayıtları RDA standartlarına uygun olarak üretilmektedir / MEF University Library Catalogue Records are Produced Compatible by RDA Rules
910 _aPandora
942 _2lcc
_cBKS
970 0 1 _aPreface,
_pxxii.
970 0 1 _aAbout the authors,
_pxxix.
970 0 1 _aIntroduction,
_p1.
970 1 1 _tProblem solving and decision making,
_p3.
970 1 1 _tQuantative analysis and decision making,
_p4.
970 1 1 _tQuantative analysis,
_p6.
970 1 1 _tModel development,
_p7.
970 1 1 _tData preparation,
_p10.
970 1 1 _tModel solution,
_p11.
970 1 1 _tReport generation,
_p12.
970 1 1 _tA note regarding implementation,
_p12.
970 1 1 _tModels of cost, revenue, and profit,
_p16.
970 1 1 _tCost and volume models,
_p14.
970 1 1 _tRevenue and volume models,
_p15.
970 1 1 _tProfit and volume models,
_p15.
970 1 1 _tBreakeven analysis,
_p16.
970 1 1 _tManagement science techniques,
_p16.
970 1 1 _tMethods used most frequently,
_p18.
970 0 1 _aSummary,
_p19.
970 0 1 _aGlossary,
_p19.
970 0 1 _aProblems,
_p20.
970 1 1 _tCase problem scheduling a golf league,
_p23.
970 1 1 _tAppendix 1.1 the management scientist software,
_p24.
970 1 1 _tAppendix 1.2 using excel for breakeven analysis,
_p26.
970 1 2 _tAn introduction to linear programming,
_p30.
970 1 1 _tA simple maximization problem,
_p32.
970 1 1 _tA problem formulation,
_p33.
970 1 1 _tMathematical statement of the par, inc., problem,
_p35.
970 1 1 _tGraphical solution procedure,
_p37.
970 1 1 _tA note on graphing lines,
_p46.
970 1 1 _tSummary of the graphical solution procedure for maximization problems,
_p48.
970 1 1 _tSlack variables,
_p49.
970 1 1 _tExtreme points and the optimal solution,
_p50.
970 1 1 _tComputer solutin of the par, inc., problem,
_p52.
970 1 1 _tInterpretation of computer outtput,
_p53.
970 1 1 _tA simple minimization problem,
_p55.
970 1 1 _tSummary of the graphical solution procedure for minimization problems,
_p57.
970 1 1 _tSurplus variables,
_p58.
970 1 1 _tComputer solution of the M&D chemicals problem,
_p59.
970 1 1 _tSpecial cases,
_p60.
970 1 1 _tAlternative optimal solutions,
_p60.
970 1 1 _tInfeasibility,
_p62.
970 1 1 _tUnbounded,
_p63.
970 1 1 _tGeneral linear programming notation,
_p65.
970 0 1 _aSummary,
_p66.
970 0 1 _aGlossary,
_p68.
970 0 1 _aProblems,
_p69.
970 1 1 _tCase problem 1 workload balancing,
_p84.
970 1 1 _tCase problem 2 production strategy,
_p85.
970 1 1 _tCase problem 3 hart venture capital,
_p86.
970 1 1 _tAppendix 2.1 solving linear programs with the management scientist,
_p87.
970 1 1 _tAppendix 2.2 solving linear programs with LINGO,
_p88.
970 1 1 _tAppendix 2.3 solving linear programs with Excel,
_p89.
970 1 2 _tLinear programming: sensitivity analysis and interpretation of solution,
_p94.
970 1 1 _tIntroduction to sensitivity analysis,
_p96.
970 1 1 _tGraphical sensitivity analysis,
_p97.
970 1 1 _tObjective function coefficients,
_p97.
970 1 1 _tRight-hand sides,
_p102.
970 1 1 _tSensitivity analysis: computer solution,
_p105.
970 1 1 _tInterpretation of computer output,
_p105.
970 1 1 _tSimultaneous changes,
_p108.
970 1 1 _tInterpretation of computer output- a second example,
_p110.
970 1 1 _tCautionary note on the interpretation of dual prices,
_p112.
970 1 1 _tMore than two decision variables,
_p113.
970 1 1 _tThe modified par, inc., problem,
_p113.
970 1 1 _tThe bluegrass farms problem,
_p118.
970 1 1 _tFormulation of the bluegrass farms problem,
_p118.
970 1 1 _tComputer solution and interpretation for the bluegrass farms problem,
_p120.
970 1 1 _tThe electronic communication problem,
_p123.
970 1 1 _tProblem formulation,
_p124.
970 1 1 _tComputer solution and interpretation,
_p125.
970 0 1 _aSummary,
_p128.
970 0 1 _aGlossary,
_p129.
970 0 1 _aProblems,
_p129.
970 1 1 _tCase problems 1 product mix,
_p151.
970 1 1 _tCase problems 2 ivestment strategy,
_p152.
970 1 1 _tCase problems 3 truck leasing strategy,
_p153.
970 1 1 _tAppendix 3.1 sensitivity analysis with Excel,
_p154.
970 1 1 _tAppendix 3.2 sensitivity analysis with LINGO,
_p157.
970 1 2 _tLinear programming applications in marketing, finance and operations management,
_p159.
970 1 1 _tMarketing applications,
_p160.
970 1 1 _tMedia selection,
_p161.
970 1 1 _tMarketing research,
_p164.
970 1 1 _tFinancial applications,
_p166.
970 1 1 _tPortfolio selection,
_p166.
970 1 1 _tFinancial planning,
_p170.
970 1 1 _tOperations management applications,
_p174.
970 1 1 _tA make-or-buy decision,
_p174.
970 1 1 _tProduction scheduling,
_p178.
970 1 1 _tWorkforce assignment,
_p183.
970 1 1 _tBlending problems,
_p189.
970 0 1 _aSummary,
_p194.
970 0 1 _aProblems,
_p194.
970 1 1 _tCase problems 1 planning an advertising campaign,
_p207.
970 1 1 _tCase problems 2 phoenix computer,
_p208.
970 1 1 _tCase problems 3 textile mill scheduling,
_p209.
970 1 1 _tCase problems 4 workforce scheduling,
_p210.
970 1 1 _tCase problems 5 duke energy coal allocation,
_p211.
970 1 1 _tAppendix 4.1 excel solution of Hewlitt corporation financial planning problem,
_p214.
970 1 2 _tAdvanced linear programming applications,
_p218.
970 1 1 _tData envelopment analysis,
_p219.
970 1 1 _tEvaluating the performance of hospitals,
_p220.
970 1 1 _tOverview of the DEA Approach,
_p220.
970 1 1 _tDEA linear programming model,
_p221.
970 1 1 _tSummary of the DEA Approach,
_p226.
970 1 1 _tRevenue management,
_p227.
970 1 1 _tPortfolio models and asset allocation,
_p233.
970 1 1 _tA portfolio of mutual funds,
_p233.
970 1 1 _tConservation portfolio,
_p234.
970 1 1 _tModerate risk portfolio,
_p237.
970 1 1 _tGame theory,
_p241.
970 1 1 _tCompeting for market share,
_p241.
970 1 1 _tIdentifying a pure strategy solution,
_p243.
970 1 1 _tIdentifying a mixed strategy solution,
_p244.
970 0 1 _aSummary,
_p252.
970 0 1 _aGlossary,
_p252.
970 0 1 _aProblems,
_p253.
970 1 2 _tDistribution and network models,
_p260.
970 1 1 _tTransportation problem,
_p261.
970 1 1 _tProblem variations,
_p264.
970 1 1 _tA general linear programming model,
_p266.
970 1 1 _tAssignment problem,
_p268.
970 1 1 _tProblem variations,
_p271.
970 1 1 _tA general linear programming model,
_p271.
970 1 1 _tShortest-route problem,
_p280.
970 1 1 _tA general linear programming model,
_p282.
970 1 1 _tMaximal flow problem,
_p283.
970 1 1 _tA production and invertory application,
_p287.
970 0 1 _aSummary,
_p290.
970 0 1 _aGlossary,
_p291.
970 0 1 _aProblems,
_p292.
970 1 1 _tCase problem 1 solutions plus,
_p308.
970 1 1 _tCase problem 2 distribution system design,
_p309.
970 1 1 _tAppendix 6.1 Excel solution of transportation, assignment, and transshipment problems,
_p311.
970 1 2 _tInteger linear programming,
_p318.
970 1 1 _tTypes of integer linear programming models,
_p320.
970 1 1 _tGraphical and computer solutions for an all-integer linear program,
_p322.
970 1 1 _tGraphical solution of the LP relaxation,
_p323.
970 1 1 _tRounding to Obtain an integer solution,
_p324.
970 1 1 _tGraphical solution of the All-integer problem,
_p324.
970 1 1 _tUsing the LP relaxation to establish bounds,
_p324.
970 1 1 _tComputer solution,
_p326.
970 1 2 _tApplication involving 0-1 variables,
_p326.
970 1 1 _tCapital budgetting,
_p327.
970 1 1 _tFixed cost,
_p328.
970 1 1 _tDistribution system design,
_p330.
970 1 1 _tBank location,
_p334.
970 1 1 _tProduct design and market share optimization,
_p338.
970 1 1 _tModelling flexibility provided by 0-1 integer variables,
_p343.
970 1 1 _tMultiple-choice and mutually exclusive constraints,
_p343.
970 1 1 _tk out of n alternatives constraint,
_p344.
970 1 1 _tConditional and corequisite constraints,
_p344.
970 1 1 _tA cautionary note about sensitivity analysis,
_p346.
970 0 1 _aSummary,
_p346.
970 0 1 _aGlossary,
_p347.
970 1 1 _tCase problems 1 textbook publishing,
_p359.
970 1 1 _tCase problems 2 yeager national bank,
_p360.
970 1 1 _tCase problems 3 production scheduling with changeover costs,
_p361.
970 1 1 _tAppendix 7.1 Excel solution of integer linear programs,
_p362.
970 1 2 _tNonlinear optimization models,
_p366.
970 1 1 _tA production application-Par, Inc., revisited,
_p368.
970 1 1 _tModeling flexibility provided by 0-1 integer variables,
_p368.
970 1 1 _tAn unconstrained problem,
_p368.
970 1 1 _tA constrained problem,
_p369.
970 1 1 _tLocal and global optima,
_p372.
970 1 1 _tDual prices,
_p375.
970 1 1 _tConstructing an index fund,
_p375.
970 1 1 _tMarkowitz portfolio model,
_p379.
970 1 1 _tBlending: the pooling problem,
_p382.
970 1 1 _tForecasting adoption of a new product,
_p387.
970 0 1 _aSummary,
_p392.
970 0 1 _aGlossary,
_p392.
970 0 1 _aProblems,
_p393.
970 1 1 _tCase problem portfolio optimization with transaction consts,
_p402.
970 1 1 _tAppendix 8.1 solving nonlinear problems with LINGO,
_p405.
970 1 1 _tAppendix 8.2 solving nonlinear problems withExcel solver,
_p407.
970 1 2 _tProject scheduling: PERT/CPM,
_p410.
970 1 1 _tProject scheduling with known activity times,
_p411.
970 1 1 _tThe concept of a critical path,
_p412.
970 1 1 _tDetermining the critical path,
_p414.
970 1 1 _tContributions of PERT/CPM,
_p418.
970 1 1 _tSummary of the PERT/CPM critical path procedure,
_p420.
970 1 1 _tProject scheduling with uncertain activity times,
_p421.
970 1 1 _tThe daugherty porta-vac project,
_p421.
970 1 1 _tUncertain activity times,
_p421.
970 1 1 _tThe critical path,
_p424.
970 1 1 _tVariability in project completion time,
_p429.
970 1 1 _tConsidering time-cost trade-off's,
_p429.
970 1 1 _tCrashing activity times,
_p429.
970 1 1 _tLinear programming model for crashing,
_p432.
970 0 1 _aSummary,
_p434.
970 0 1 _aGlossary,
_p435.
970 0 1 _aProblems,
_p435.
970 1 1 _tCase problem R.C.C. Coleman,
_p445.
970 1 2 _tInventory models,
_p447.
970 1 1 _tEconomic order quantity (EOQ) model,
_p448.
970 1 1 _tThe how-much-to-order decision,
_p453.
970 1 1 _tThe when-to-order decision,
_p454.
970 1 1 _tSensitivity analysis for the EOQ model,
_p455.
970 1 1 _tExcel solution of the EOQ model,
_p456.
970 1 1 _tSummary of the EOQ model assumptions,
_p457.
970 1 1 _tEconomic production lot size model,
_p458.
970 1 1 _tTotal cost model,
_p459.
970 1 1 _tEconomic production lot size,
_p461.
970 1 1 _tInventory model with planned shortages,
_p461.
970 1 1 _tQuantity discounts for the EOQ model,
_p466.
970 1 1 _tSingle-period inventory model with probabilistic demand,
_p468.
970 1 1 _tJohnson shoe company,
_p469.
970 1 1 _tNationwide car rental,
_p473.
970 1 1 _tOrder-quantity, reorder point model with probabilistic demand,
_p474.
970 1 1 _tThe how-much-to-order decision,
_p475.
970 1 1 _tThe when-to-order decision,
_p476.
970 1 1 _tPeriodic review model with probabilistic demand,
_p478.
970 1 1 _tMore complex periodic review models,
_p481.
970 0 1 _aSummary,
_p482.
970 0 1 _aGlossary,
_p483.
970 0 1 _aProblems,
_p484.
970 1 1 _tCase problem 1 wagner fabricating company,
_p492.
970 1 1 _tCase problem 2 river city fire department,
_p493.
970 1 1 _tAppendix 10.1 development of the optimal order quantity (Q*) formula for the EOQ model,
_p494.
970 1 1 _tAppendix 10.2 development of the optimal lot size (Q*) formula for the production lot size model,
_p495.
970 1 2 _tWaiting line models,
_p496.
970 1 1 _tStructure of a waiting line system,
_p498.
970 1 1 _tSingle-channel waiting line,
_p498.
970 1 1 _tDistribution of arrivals,
_p498.
970 1 1 _tDistribution of service times,
_p500.
970 1 1 _tQueue discipline,
_p501.
970 1 1 _tSteady-state operation,
_p501.
970 1 1 _tSingle-channel waiting line model with poisson arrivals and exponential service time,
_p502.
970 1 1 _tOperating characteristics,
_p502.
970 1 1 _tOperating characteristics for the burger dome problem,
_p503.
970 1 1 _tManagers use of waiting line models,
_p504.
970 1 1 _tImproving the waiting line operation,
_p504.
970 1 1 _tExcel solution of waiting line model,
_p505.
970 1 1 _tMultiple-channel waiting line model with poisson arrivals and exponential service times,
_p506.
970 1 1 _tOperating characteristics,
_p507.
970 1 1 _tOperating characteristics for the burger dome problem,
_p509.
970 1 1 _tSome general relationships for waiting line models,
_p511.
970 1 1 _tEconomic analysis of waiting lines,
_p513.
970 1 1 _tOther waiting line models,
_p514.
970 1 1 _tSingle-channel waiting line model with poisson arrivals and arbitrary service times,
_p515.
970 1 1 _tOperating characteristics for the M/G/1 model,
_p515.
970 1 1 _tConstant service times,
_p517.
970 1 1 _tMultiple-channel model with poisson arrivals, arbitrary service times, and no waiting line,
_p518.
970 1 1 _tOperating charecteristics for the M/G/1 model with blocked customers cleared,
_p518.
970 1 1 _tCustomers cleared,
_p518.
970 1 1 _tWaiting line models with finite calling populations,
_p520.
970 1 1 _tOperating characteristics for the M/M/1 model with a finite calling population,
_p521.
970 0 1 _aSummary,
_p523.
970 0 1 _aGlossary,
_p525.
970 0 1 _aProblems,
_p525.
970 1 1 _tCase problem 1 regional airlines,
_p533.
970 1 1 _tCase problem 2 office equipment, Inc.,
_p534.
970 1 2 _tSimulation,
_p536.
970 1 1 _tRisk analysis,
_p539.
970 1 1 _tWhat-if analysis,
_p539.
970 1 1 _tSimulation,
_p541.
970 1 1 _tSimulation of the portacom project,
_p548.
970 1 1 _tInventory simulation,
_p552.
970 1 1 _tButler inventory simulation,
_p555.
970 1 1 _tWaiting line simulation,
_p557.
970 1 1 _tHammodsport savings bank ATM waiting line,
_p557.
970 1 1 _tCustomer arrival times,
_p558.
970 1 1 _tCustomer service times,
_p559.
970 1 1 _tSimulation model,
_p559.
970 1 1 _tHammondsport savings bank atm simulation,
_p563.
970 1 1 _tSimulation with two ATMs,
_p564.
970 1 1 _tSimulation results with two ATMs,
_p566.
970 1 1 _tOther simulation issues,
_p568.
970 1 1 _tComputer implementation,
_p568.
970 1 1 _tVerification and validation,
_p569.
970 1 1 _tAdvantages and disadvantages of using simulation,
_p569.
970 0 1 _aSummary,
_p570.
970 0 1 _aGlossary,
_p571.
970 0 1 _aProblems,
_p572.
970 1 1 _tCase problem 1 tri-state corporation,
_p579.
970 1 1 _tCase problem 2 harbor dunes golf course,
_p581.
970 1 1 _tCase problem 3 country beverage drive-thru,
_p582.
970 1 1 _tAppendix 12.1 simulation with excel,
_p584.
970 1 1 _tAppendix 12.2 simulation using crystal ball,
_p590.
970 1 2 _tDecision analysis,
_p595.
970 1 1 _tProblem formulation,
_p597.
970 1 1 _tInfluence diagrams,
_p598.
970 1 1 _tPayoff tables,
_p598.
970 1 1 _tDecision trees,
_p598.
970 1 1 _tDecision making without probabilities,
_p600.
970 1 1 _tOptimistic approach,
_p600.
970 1 1 _tConservative approach,
_p600.
970 1 1 _tMinimax regret approach,
_p601.
970 1 1 _tDecision making with probabilities,
_p602.
970 1 1 _tExpected value of perfect information,
_p605.
970 1 1 _tRisk analysis and sensitivity analysis,
_p607.
970 1 1 _tRisk analysis,
_p607.
970 1 1 _tSensitivity analysis,
_p607.
970 1 1 _tDecision analysisi with sample information,
_p612.
970 1 1 _tInfluence diagram,
_p612.
970 1 1 _tDecision tree,
_p613.
970 1 1 _tDecision strategy,
_p615.
970 1 1 _tRisk profile,
_p619.
970 1 1 _tExpected value of sample information,
_p621.
970 1 1 _tEfficiency of sample information,
_p622.
970 1 1 _tComputing branch probabilities,
_p622.
970 0 1 _aSummary,
_p626.
970 0 1 _aGlossary,
_p627.
970 0 1 _aProblems,
_p629.
970 1 1 _tCase problem 1 property pruchase strategy,
_p642.
970 1 1 _tCase problem 2 lawsuit defense strategy,
_p643.
970 1 1 _tAppendix 13.1 decision analysis with treeplan,
_p644.
970 1 2 _tMulticriteria decisions,
_p650.
970 1 1 _tGoal programming: formulation and graphical solution,
_p651.
970 1 1 _tDeveloping the constraints and the goal equations,
_p652.
970 1 1 _tDeveloping on objective function with preemptive priorities,
_p654.
970 1 1 _tGraphical solution procedure,
_p655.
970 1 1 _tGoal programming model,
_p658.
970 1 1 _tGoal programmin: solving more complex problems,
_p659.
970 1 1 _tSuncoast office supplies problem,
_p659.
970 1 1 _tFormulating the gaol equations,
_p660.
970 1 1 _tFormulating the objective function,
_p661.
970 1 1 _tComputer solution,
_p662.
970 1 1 _tScoring models,
_p665.
970 1 1 _tAnalytic hierarchy process,
_p670.
970 1 1 _tDeveloping the hierarchy,
_p671.
970 1 1 _tEstablishing priorities using AHP,
_p672.
970 1 1 _tPairwise comparisons,
_p672.
970 1 1 _tPairwise comparisons matrix,
_p674.
970 1 1 _tSynthesization,
_p675.
970 1 1 _tConsistency,
_p676.
970 1 1 _tOther pairwise comparisons for the car selection problem,
_p678.
970 1 1 _tUsing AHP to develop an overall priority ranking,
_p680.
970 0 1 _aSummary,
_p681.
970 0 1 _aGlossary,
_p682.
970 0 1 _aProblems,
_p683.
970 1 1 _tCase problem EZ Trailers, Inc.,
_p692.
970 1 1 _tAppendix 14.1 scoring models with Excel,
_p693.
970 1 2 _tForecasting,
_p695.
970 1 1 _tComponents of a time series,
_p698.
970 1 1 _tTrend component,
_p698.
970 1 1 _tCyclical component,
_p698.
970 1 1 _tSeasonal component,
_p699.
970 1 1 _tIrregular component,
_p700.
970 1 1 _tSmoothing methods,
_p700.
970 1 1 _tMoving averages,
_p700.
970 1 1 _tWeighted moving averages,
_p703.
970 1 1 _tExponential smoothing,
_p704.
970 1 1 _tTrend projection,
_p709.
970 1 1 _tTrend and seasonal components,
_p712.
970 1 1 _tMultiplicative model,
_p713.
970 1 1 _tCalculating the seasonal indexes,
_p713.
970 1 1 _tDeseasonalizing the time series,
_p717.
970 1 1 _tUsing deseasonalized time series to identify trend,
_p718.
970 1 1 _tSeasonal adjustments,
_p720.
970 1 1 _tModels based on mothly data,
_p721.
970 1 1 _tCyclical component,
_p721.
970 1 1 _tRegression analysis,
_p722.
970 1 1 _tUsing regression analysis as a causal forecasting method,
_p722.
970 1 1 _tUsing regression analysis with time series data,
_p727.
970 1 1 _tQualitative approaches,
_p729.
970 1 1 _tDelphi method,
_p729.
970 1 1 _tExpert judgment,
_p729.
970 1 1 _tScenario writing,
_p729.
970 1 1 _tIntutive approaches,
_p730.
970 0 1 _aSummary,
_p730.
970 0 1 _aGlossary,
_p731.
970 0 1 _aProblems,
_p732.
970 1 1 _tCase problem 1 forecasting sales,
_p741.
970 1 1 _tCase problem 2 forecasting lost sales,
_p742.
970 1 1 _tAppendix 15.1 using excel for forecasting,
_p743.
970 1 1 _tAppendix 15.2 using CB predicttor for forecasting,
_p745.
970 1 2 _tMarkov processes,
_p748.
970 1 1 _tMarket share analysis,
_p750.
970 1 1 _tAccounts receivable analysis,
_p757.
970 1 1 _tFundamental matrix and associated calculations,
_p759.
970 1 1 _tEstablishing the allowanve for doubtful accounts,
_p760.
970 0 1 _aSummary,
_p762.
970 0 1 _aGlossary,
_p763.
970 0 1 _aProblems,
_p763.
970 1 1 _tCase probem deater's absorting state probabilities in blackjack,
_p767.
970 1 1 _tAppendix 16.1 matrix notation and operations,
_p768.
970 1 1 _tAppendix 16.2 matrix inversion with Excel,
_p772.
970 1 2 _tLinear programming: simplex method on CD.
970 1 1 _tAn algebraic overview of the simplex method,
_p17-2.
970 1 1 _tAlgebraic properties of the simplex-medthod,
_p17-3.
970 1 1 _tDetermining a basic solution,
_p17-3.
970 1 1 _tBasic feasible solution,
_p17-4.
970 1 1 _tTableau form,
_p17-5.
970 1 1 _tSetting up the initial simplex tableau,
_p17-7.
970 1 1 _tImproving the solution,
_p17-10.
970 1 1 _tCalculating the next tableau,
_p17-12.
970 1 1 _tInterpreting the results of an iteration,
_p17-15.
970 1 1 _tMoving toward a better solution,
_p17-15.
970 1 1 _tInterpreting the optimal solution,
_p17-18.
970 1 1 _tSummary of the simplex method,
_p17-19.
970 1 1 _tTableau form: the general case,
_p17-20.
970 1 1 _tGreater-than-or-equal-to constraints,
_p17-20.
970 1 1 _tEquality constraints,
_p17-24.
970 1 1 _tEliminating negative right-hand-side values,
_p17-25.
970 1 1 _tSummary of the steps to create tableau form,
_p17-26.
970 1 1 _tSolving a minimization problem,
_p17-27.
970 1 1 _tSpecial cases,
_p17-29.
970 1 1 _tInfesability,
_p17-29.
970 1 1 _tUnboundedness,
_p17-31.
970 1 1 _tAlternative optimal solutions,
_p17-32.
970 0 1 _aSummary,
_p17-35.
970 0 1 _aGlossary,
_p17-36.
970 0 1 _aProblems,
_p17-37.
970 1 2 _tSimplex-based sensitivity analysis and duality On CD.
970 1 1 _tSensitivity analysis with the simplex tableau,
_p18-2.
970 1 1 _tObjective function coefficients,
_p18-2.
970 1 1 _tRight-hand-side values,
_p18-6.
970 1 1 _tSimultaneous changes,
_p18-13.
970 1 1 _tDuality 18-14.
970 1 1 _tEconomic interpretation of the dual variables,
_p18-16.
970 1 1 _tUsing the dual to identify the primal solution,
_p18-18.
970 1 1 _tFinding the dual of any primal problem,
_p18-18.
970 0 1 _aSummary,
_p18-20.
970 0 1 _aGlossary,
_p18-21.
970 0 1 _aProblems,
_p18-21.
970 1 2 _tSolution procedures for transportation and assignment pronlems On CD.
970 1 1 _tTransportation simplex method: a special-purpose solution procedure,
_p19-2.
970 1 1 _tPhase I: finding an initial feasible solution,
_p19-2.
970 1 1 _tPhase II: Iterating to the optimal solution,
_p19-7.
970 1 1 _tSummary of the transportation simplex method,
_p19-17.
970 1 1 _tProblem variations,
_p19-17.
970 1 1 _tAssignment problem: a special-purpose solution procedure,
_p19-18.
970 1 1 _tFinding the minimum number of lines,
_p19-21.
970 1 1 _tProblem variations,
_p19-21.
970 0 1 _aGlossary,
_p19-25.
970 0 1 _aProblems,
_p19-26.
970 1 2 _tMinimal spanning tree ON CD.
970 1 1 _tA minimal spanning tree algorithm,
_p20-2.
970 0 1 _aGlossary,
_p20-5.
970 0 1 _aProblems,
_p20-5.
970 1 2 _tDynamic programming On CD.
970 1 2 _tDynamic programming On CD.
970 1 1 _tA shortest-route problem,
_p21-2.
970 1 1 _tDynamic programming notation,
_p21-6.
970 1 1 _tThe knapsack problem,
_p21-10.
970 1 1 _tA production and inventory control problem,
_p21-16.
970 0 1 _aSummary,
_p21-20.
970 0 1 _aGlossary,
_p21-21.
970 0 1 _aProblems,
_p21-22.
970 1 1 _tCase problem process design,
_p21-26.
970 1 1 _tAppendixes,
_p773.
970 1 1 _tAppendix A areas for the standard normal distribution,
_p774.
970 1 1 _tAppendix B values of e⁻λ,
_p775.
970 1 1 _tAppendix C references and bibliography,
_p776.
970 1 1 _tAppendix D self-test solutions and answers to even-numbered problems,
_p778.
970 0 1 _aIndex,
_p807.
999 _c5601
_d5601
003 KOHA