000 11670nam a2202245 i 4500
003 KOHA
005 20231005154756.0
008 220407s2019 sz a b 000 0 eng d
020 _a9783030239213
_q(hardback)
020 _a9783030239220
_q(ebook)
040 _aYDX
_beng
_erda
_cYDX
_dBDX
_dMYG
_dOCLCF
_dTR-IsMEF
041 0 _aeng
050 1 4 _aQA76.889
_b.H53 2019
100 1 _aHidary, Jack D.,
_eauthor.
245 1 0 _aQuantum computing :
_ban applied approach /
_cJack D. Hidary, Alphabet X, Mountain View, CA, USA.
264 1 _aCham, Switzerland :
_bSpringer,
_c2019.
264 4 _c©2019
300 _axix, 379 pages :
_billustrations ;
_c25 cm.
336 _atext
_2rdacontent
337 _aunmediated
_2rdamedia
338 _avolume
_2rdacarrier
504 _aIncludes bibliographical references (pages 353-379).
505 0 _tI. Foundations.
_a1. Superposition, entanglement and reversibility -- 2. A brief history of quantum computing -- 3. Qubits, operators and measurement -- 4. Complexity theory.
505 0 _tII. Hardware and applications.
_a5. Building a quantum computer -- 6. Development libraries for quantum computer programming -- 7. Teleportation, superdense coding and Bell's inequality -- 8. the canon : walkthroughs -- 9. Quantum computing methods -- 10. Applications and quantum supremacy.
505 0 _tIII. Toolkit.
_a11. Mathematical tools for quantum computing I -- 12. Mathematical tools for quantum computing II -- 13. Mathematical tools for quantum computing III -- 14. Table of quantum operators and core circuits.
520 0 _aThis book integrates the foundations of quantum computing with a hands-on coding approach to this emerging field; it is the first work to bring these strands together in an updated manner. This work is suitable for both academic coursework and corporate technical training. This volume comprises three books under one cover: Part I outlines the necessary foundations of quantum computing and quantum circuits. Part II walks through the canon of quantum computing algorithms and provides code on a range of quantum computing methods in current use. Part III covers the mathematical toolkit required to master quantum computing. Additional resources include a table of operators and circuit elements and a companion GitHub site providing code and updates. Jack D. Hidary is a research scientist in quantum computing and in AI at Alphabet X, formerly Google X. “Quantum Computing will change our world in unexpected ways. Everything technology leaders, engineers and graduate students need is in this book including the methods and hands-on code to program on this novel platform.” ―Eric Schmidt, PhD, Former Chairman and CEO of Google; Founder, Innovation Endeavors.
_uhttps://www.amazon.com/Quantum-Computing-Approach-Jack-Hidary/dp/3030239217
650 0 _aQuantum computing
900 _aMEF Üniversitesi Kütüphane katalog kayıtları RDA standartlarına uygun olarak üretilmektedir / MEF University Library Catalogue Records are Produced Compatible by RDA Rules
910 _aPandora
942 _2lcc
_cBKS
_01
970 0 1 _aContents.
970 0 1 _aPreface,
_pxi.
970 0 1 _aAcknowledgements,
_pxv.
970 0 1 _aNavigating this Book,
_pxvii.
970 1 2 _lI.
_tFoundations.
970 1 2 _l1
_tSuperposition, Entanglement and Reversibility,
_a3.
970 1 2 _l2
_tA Brief History of Quantum Computing,
_p11.
970 1 2 _l3
_tOubits, Operators and Measurement,
_p17.
970 1 1 _l3.1.
_tQuantum Operators,
_p22.
970 1 1 _tUnary Operators,
_p22.
970 1 1 _tBinary Operators,
_p26.
970 1 1 _tTernary Operators,
_p28.
970 1 1 _l3.2.
_tComparison with Classical Gates,
_p30.
970 1 1 _l3.3.
_tUniversality of Quantum Operators,
_p31.
970 1 1 _l3.4.
_tGottesman-Knill and Solovay-Kitaev,
_p31.
970 1 1 _l3.5.
_tThe Bloch Sphere,
_p32.
970 1 1 _l3.6.
_tThe Measurement Postulate,
_p33.
970 1 1 _l3.7.
_tComputation-in-Place,
_p35.
970 1 2 _l4
_tComplexity Theory,
_p37.
970 1 1 _l4.1.
_tProblems vs. Algorithms,
_p37.
970 1 1 _l4.2.
_tTime Complexity,
_p38.
970 1 1 _l4.3.
_tComplexity Classes,
_p40.
970 1 1 _l4.4.
_tQuantum Computing and the Church-Turing Thesis,
_p43.
970 1 2 _lII
_tHardware and Applications.
970 1 1 _l5
_tBuilding a Quantum Computer,
_p47.
970 1 1 _l5.1
_tAssessing a Quantum Computer,
_p47.
970 1 1 _l5.2
_tNeutral Atom,
_p49.
970 1 1 _l5.3
_tNMR,
_p50.
970 1 1 _l5.4
_tNV Center-in-Diamond,
_p51.
970 1 1 _l5.5
_tPhotonics,
_p52.
970 1 1 _l5.6
_tSpin Qubits,
_p54.
970 1 1 _l5.7
_tSuperconducting Qubits,
_p56.
970 1 1 _l5.8
_tTopological Quantum Computation,
_p57.
970 1 1 _l5.9.
_tTrapped Ion,
_p58.
970 1 1 _l5.10.
_tSummary,
_p59.
970 1 2 _l6
_tDevelopment Libraries for Quantum Computer Programming,
_p61.
970 1 1 _l6.1
_tQuantum Computers and QC Simulators,
_p62.
970 1 1 _l6.2
_tCirq,
_p64.
970 1 1 _l6.3
_tQiskit,
_p66.
970 1 1 _l6.4
_tForest,
_p69.
970 1 1 _l6.5
_tQuntum Development Kit,
_p71.
970 1 1 _l6.6
_tDev Libraries Summary,
_p74.
970 1 1 _tUsing the Libraries,
_p75.
970 1 1 _tOther Development Libraries,
_p75.
970 1 1 _l6.7
_tAdditional Quantum Programs,
_p76.
970 1 1 _tBell States,
_p76.
970 1 1 _tGates with Parameters,
_p77.
970 1 2 _l7
_tTeleportation, Superdance Coding and Bell's Inequality,
_p81.
970 1 1 _l7.1
_tQuantum Teleportation,
_p81.
970 1 1 _l7.2
_tSuperdance Coding,
_p84.
970 1 1 _l7.3
_tCode for Quantum Teleportation and Superdance Communication,
_p85.
970 1 1 _l7.4.
_tBell Inequality Test,
_p88.
970 1 2 _l8
_tThe Canon: Code Walkthroughs,
_p95.
970 1 1 _l8.1
_tThe Deutsch-Jozsa Algorithm,
_p97.
970 1 1 _l8.2
_tThe Bernstein-Vazirani Algorithm,
_p104.
970 1 1 _l8.3
_tSimon's Problem,
_p107.
970 1 1 _l8.4
_tQuantum Fourier Transform,
_p108.
970 1 1 _l8.5
_tShor's Algorithm,
_p111.
970 1 1 _tRSA Cryptography,
_p111.
970 1 1 _tThe Period of a Function,
_p113.
970 1 1 _tPeriod of a Function,
_p113.
970 1 1 _tPeriod of a Function as an Input to a Factorization Algorithm,
_p114.
970 1 1 _l8.6
_tGrover's Search Algorithm,
_p126.
970 1 2 _l9
_tQuantum Computing Methods,
_p131.
970 1 1 _l9.1
_tVariational Quantum Eigensolver,
_p131.
970 1 1 _tVQE with Noise,
_p136.
970 1 1 _tMore Sophisticated Ansatzes,
_p138.
970 1 1 _l9.2
_tQuantum Chemistry,
_p139.
970 1 1 _l9.3
_tQuantum Approximate Optimization Algorithm (QAOA),
_p144.
970 1 1 _tExample Implementation of QAOA,
_p147.
970 1 1 _l9.4
_tMachine Learning on Quantum Processors,
_p154.
970 1 1 _l9.5
_tQuantum Phase Estimation,
_p160.
970 1 1 _tImplemention of QPE,
_p163.
970 1 1 _l9.6
_tSolving Linear Systems,
_p166.
970 1 1 _tDescription of the HHL Algorithm,
_p168.
970 1 1 _tExample Implementation of the HHL Algorithm,
_p170.
970 1 1 _l9.7
_tQuantum Random Number Generator,
_p178.
970 1 1 _l9.8
_tQuantum Walks,
_p180.
970 1 1 _tImplementation of a Quantum Walk,
_p182.
970 1 1 _l9.9
_tSummary,
_p187.
970 1 2 _l10
_tApplications and Quantum Supremacy,
_p189.
970 1 1 _l10.1
_tApplications,
_p189.
970 1 1 _tQuantum Simulation and Chemistry,
_p189.
970 1 1 _tSampling from Probability Distributions,
_p190.
970 1 1 _tLinear Algebra Speedup with Quantum Computers,
_p190.
970 1 1 _tOptimization,
_p190.
970 1 1 _tTensor Networks,
_p190.
970 1 1 _l10.2
_tQuantum Supremacy,
_p190.
970 1 1 _tRandom Circuit Sampling,
_p191.
970 1 1 _tOther Problems for Demonstrating Quantum Supremacy,
_p195.
970 1 1 _tQuantum Advance,
_p196.
970 1 1 _l10.3
_tFuture Directions,
_p196.
970 1 1 _tQuantum Error Correction,
_p196.
970 1 1 _tDoing Physics with Quantum Computers,
_p197.
970 1 2 _lIII
_tToolkit.
970 1 2 _l11
_tMathematical Tools for Quantum Computing I,
_p201.
970 1 1 _l11.1
_tIntroduction and Self-Test,
_p201.
970 1 1 _l11.2
_tLinear Algebra,
_p203.
970 1 1 _tVectors and Notation,
_p203.
970 1 1 _tBasic Vector Operations,
_p204.
970 1 1 _tThe Norm of a Vector,
_p208.
970 1 1 _tThe Dot Product,
_p211.
970 1 1 _l11.3
_tThe Complex Numbers and the Inner Product,
_p214.
970 1 1 _tComplex Numbers,
_p214.
970 1 1 _tThe Inner Product as a Refinement of the Dot Product,
_p216.
970 1 1 _tThe Polar Coordinate Representation of a Complex Number,
_p220.
970 1 1 _l11.4
_tA First Look at Matrices,
_p228.
970 1 1 _tBasic Matrix Operations,
_p228.
970 1 1 _tThe Identity Matrix,
_p235.
970 1 1 _tTranspose, Conjugate and Trace,
_p237.
970 1 1 _tMatrix Exponentiation,
_p244.
970 1 1 _l11.5
_tThe Outer Product and the Tensor Product,
_p245.
970 1 1 _tThe Outer Product as a Way of Building Matrices,
_p245.
970 1 1 _tThe tensor Product,
_p247.
970 1 1 _l11.6
_tSet Theory,
_p250.
970 1 1 _tThe Basics of Set Theory,
_p250.
970 1 1 _tThe Cartesian Product,
_p253.
970 1 1 _tRelations and Functions,
_p254.
970 1 1 _tImportant Properties of Functions,
_p259.
970 1 1 _l11.7
_tThe Definition of a Linear Transformation,
_p264.
970 1 1 _l11.8
_tHow to Build a Vector Space From Scratch,
_p266.
970 1 1 _tGroups,
_p267.
970 1 1 _tFields,
_p273.
970 1 1 _tThe Definition of a Vector Space,
_p280.
970 1 1 _tSubspaces,
_p282.
970 1 1 _l11.9
_tSpan, Linear Independence, Base and Dimension,
_p285.
970 1 1 _tSpan,
_p285.
970 1 1 _tLinear Independence,
_p287.
970 1 1 _tBases and Dimesion,
_p289.
970 1 1 _tOrthonormal Bases,
_p292.
970 1 2 _l12
_tMathematical Tools for Quantum Computing II,
_p295.
970 1 1 _l12.1
_tLinear Transformations as Matrices,
_p295.
970 1 1 _l12.2
_tMatrices as Operators,
_p300.
970 1 1 _tAn Introduction to the Determinant,
_p300.
970 1 1 _tThe Geometry of the Determinant,
_p305.
970 1 1 _tMatrix Inversion,
_p306.
970 1 1 _l12.3
_tEigenvectors and Eigenvelues,
_p314.
970 1 1 _tChange of Basis,
_p316.
970 1 1 _t12.4
_pFurther Investigation of Inner Products,
_l319.
970 1 1 _tThe Kronecker Delta Function as an Inner Product,
_p322.
970 1 1 _l12.5
_tHermitian Operators,
_p322.
970 1 1 _tWhy We Can't Measure with Complex Numbers,
_p322.
970 1 1 _tHermilitian Operators Have Real Eigenvalues,
_p324.
970 1 1 _l12.6
_tUnitary operators,
_p326.
970 1 1 _l12.7
_tThe Direct Sum and the Tensor Product,
_p327.
970 1 1 _tThe Direct Sum,
_p327.
970 1 1 _tThe Tensor Product,
_p329.
970 1 1 _l12.8
_tHilbert Space,
_p333.
970 1 1 _tMetrics, Cauchy Sequences and Completeness,
_p333.
970 1 1 _tAn Axiomatic Definition of the Inner Product,
_p337.
970 1 1 _tThe Definition of Hilbert Space,
_p338.
970 1 1 _l12.9
_tThe Qubit as a Hilbert Space,
_p339.
970 1 2 _l13
_tMathematical Tools for Quantum Computing III,
_p343.
970 1 1 _l13.1
_tBoolean Functions,
_p343.
970 1 1 _l13.2
_tLogarithms and Exponentials,
_p344.
970 1 1 _l13.3
_tEuler's Formula,
_p346.
970 1 2 _l14
_tTable of Quantum Operators and Core Circuits,
_p349.
970 1 1 _tWorks Cited,
_p353.
999 _c27561
_d27561