Fundamentals of quantum entanglement / F.J. Duarte.
Material type:
Item type | Current library | Collection | Call number | Copy number | Status | Date due | Barcode |
---|---|---|---|---|---|---|---|
E-Books | MEF eKitap Kütüphanesi | IOP Science eBook - EBA | QC174.17.E58 D834 2019eb (Browse shelf (Opens below)) | Available | IOP_20210119 |
"Version: 20191001"--Title page verso.
Includes bibliographical references and index.
1. Introduction -- 1.1. Introduction -- 1.2. A few words on quantum mechanics -- 1.3. Ward's observation -- 1.4. History of quantum entanglement -- 1.5. The field of quantum entanglement -- 1.6. Fundamentals of Quantum Entanglement -- 1.7. Inten
2. Dirac's contribution -- 2.1. Introduction -- 2.2. Dirac's pair theory -- 2.3. Dirac's notation -- 2.4. Dirac's notation in N-slit interferometers -- 2.5. Semi coherent interference -- 2.6. From quantum probabilities to measurable intensities
3. The Einstein-Podolsky-Rosen (EPR) paper -- 3.1. Introduction -- 3.2. EPR's doubts on quantum mechanics -- 3.3. EPR's definition of a correct theory
4. The Schr�odinger papers -- 4.1. Introduction -- 4.2. The first Schr�odinger paper -- 4.3. The second Schr�odinger paper
5. Wheeler's paper -- 5.1. Introduction -- 5.2. Wheeler's paper's significance to quantum theory -- 5.3. Wheeler's paper's significance to quantum experiments
6. The probability amplitude for quantum entanglement -- 6.1. Introduction -- 6.2. The Pryce-Ward paper -- 6.3. Ward's doctoral thesis -- 6.4. Summary
7. The quantum entanglement experiment -- 7.1. Introduction -- 7.2. The quantum entanglement experiment -- 7.3. Historical notes
8. The annihilation quantum entanglement experiments -- 8.1. Introduction -- 8.2. The first three quantum entanglement experiments -- 8.3. Further significance of the annihilation experiments
9. The Bohm and Aharonov paper -- 9.1. Introduction -- 9.2. Significance to the development of quantum entanglement research -- 9.3. Philosophy and physics
10. Bell's theorem -- 10.1. Introduction -- 10.2. von Neumann's work -- 10.3. Bell's theorem or Bell's inequalities -- 10.4. An additional perspective on Bell's theorem -- 10.5. Example -- 10.6. More philosophy and physics
11. Feynman's Hamiltonians -- 11.1. Introduction -- 11.2. Probability amplitudes via Hamiltonians �a la Feynman -- 11.3. Arrival to quantum entanglement probability amplitudes -- 11.4. Discussion
12. The second Wu quantum entanglement experiment -- 12.1. Introduction -- 12.2. Salient features -- 12.3. Bell's theorem and hidden variables
13. The hidden variable theory experiments -- 13.1. Introduction -- 13.2. Testing for local hidden variable theories -- 13.3. Early optical experiment -- 13.4. Observations and discussion
14. The optical quantum entanglement experiments -- 14.1. Introduction -- 14.2. The Aspect experiments -- 14.3. Observations and discussion
15. The quantum entanglement probability amplitude 1947-1992 -- 15.1. Introduction -- 15.2. The quantum entanglement probability amplitude 1947-92 -- 15.3. Observations and discussion
16. The GHZ probability amplitudes -- 16.1. Introduction -- 16.2. The GHZ probability amplitudes -- 16.3. Observations and discussion
17. The interferometric derivation of the quantum entanglement probability amplitude for n = N = 2 -- 17.1. Introduction -- 17.2. The meaning of the Dirac-Feynman probability amplitude -- 17.3. The derivation of the quantum entanglement probabil
18. The interferometric derivation of the quantum entanglement probability amplitude for n = N = 2p1s, 2p2s, 2p3s, 2p4s, ... 2prs -- 18.1. Introduction -- 18.2. The quantum entanglement probabili
19. The interferometric derivation of the quantum entanglement probability amplitudes for n = N = 3, 6 -- 19.1. Introduction -- 19.2. The quantum entanglement probability amplitude for n = N = 3 -- 19.3. The quantum entanglement probability ampl
20. What happens with the entanglement at n = 1 and N = 2? -- 20.1. Introduction -- 20.2. Reversibility : from entanglement to interference -- 20.3. Schematics -- 20.4. Experimental and theoretical perspectives -- 20.5. Interference for N slits
21. Quantum entanglement probability amplitudes and Bell's theorem -- 21.1. Introduction -- 21.2. Probability amplitudes -- 21.3. Quantum polarization -- 21.4. Quantum probabilities and Bell's theorem -- 21.5. Example -- 21.6. Discussion
22. Cryptography via quantum entanglement -- 22.1. Introduction -- 22.2. Measurement protocol -- 22.3. Experiments
23. Quantum entanglement and teleportation -- 23.1. Introduction -- 23.2. The mechanics of teleportation -- 23.3. Technology
24. Quantum entanglement and quantum computing -- 24.1. Introduction -- 24.2. Entropy -- 24.3. Qbits -- 24.4. Quantum entanglement and Pauli matrices -- 24.5. Pauli matrices and quantum entanglement -- 24.6. Quantum gates -- 24.7. The Hadamard m
25. Space-to-space and space-to-Earth communications via quantum entanglement -- 25.1. Introduction -- 25.2. Space-to-space configurations -- 25.3. The space-to-Earth experiment -- 25.4. Further horizons
26. Space-to-space quantum interferometric communications : an alternative to quantum entanglement communications? -- 26.1. Introduction -- 26.2. The generalized N-slit quantum interference equations -- 26.3. The generation and transmission of i
27. Quanta pair sources for quantum entanglement experiments -- 27.1. Introduction -- 27.2. Positron-electron annihilation -- 27.3. Atomic Ca emission -- 27.4. Type I SPDC -- 27.5. Type II SPDC -- 27.6. Further horizons
28. More on quantum entanglement -- 28.1. Introduction -- 28.2. Consequences of the EPR paper -- 28.3. Hidden variable theories -- 28.4. The perspectives of EPR and Schr�odinger on quantum entanglement -- 28.5. Indistinguishability and Dirac
29. On the interpretation of quantum mechanics -- 29.1. Introduction -- 29.2. Quantum critical -- 29.3. Pragmatic perspective -- 29.4. Fundamental principles -- 29.5. The Dirac-Feynman-Lamb doctrine -- 29.6. The importance of the probability amp
Quantum entanglement (QE) is undoubtedly one of the most, if not the most, mysterious and yet most promising subjects of current physics. With applications in cryptographic space-to-space, space-to-earth, and fibre communications, in addition to
Research students, optical engineers, communication, cryptography specialist, physicists not specialized in Dirac's quantum mechanics.
Also available in print.
Mode of access: World Wide Web.
System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.
F.J. Duarte is an award-winning laser physicist who is a Fellow of the Australian Institute of Physics, and the Optical Society. As an expert in the field of narrow-linewidth tuneable lasers and their applications, Duarte has a vast knowledge an
Title from PDF title page (viewed on November 18, 2019).