Energy density functional methods for atomic nuclei / edited by Nicolas Schunck.

Contributor(s): Schunck, Nicolas [editor.] | Institute of Physics (Great Britain) [publisher.]Material type: TextTextSeries: IOP (Series)Release 6 | IOP expanding physicsPublisher: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2019]Description: 1 online resource (various pagings) : illustrations (some color)Content type: text Media type: electronic Carrier type: online resourceISBN: 9780750314220 ebookSubject(s): Nuclear structure | Nuclear reactions | Density functionals | Nuclear physics | SCIENCE / Physics / NuclearAdditional physical formats: Print version:: No titleDDC classification: 539.7/4 LOC classification: QC793.3.S8 E544 2019ebOnline resources: e-book Full-text access Also available in print.
Contents:
1. Non-relativistic energy density functionals -- 1.1. Introduction -- 1.2. Energy density functional kernels -- 1.3. Pairing and Coulomb functionals
2. Covariant energy density functionals -- 2.1. Relativistic description of quantum systems -- 2.2. Symmetry properties of QCD -- 2.3. Effective Lagrangians for nuclear systems -- 2.4. Phenomenological Lagrangians -- 2.5. Derivation of the covar
3. Single-reference and multi-reference formulations -- 3.1. Single-reference implementation of nuclear energy density functionals -- 3.2. Multi-reference implementation of nuclear energy density functionals
4. Time-dependent density functional theory -- 4.1. Time evolution equations -- 4.2. Role of pairing correlations in nuclear dynamics -- 4.3. Local DFT for superfluids -- 4.4. Validation of the TDSLDA : the unitary Fermi gas -- 4.5. Symmetry-bre
5. Small-amplitude collective motion -- 5.1. RPA with a Hamiltonian -- 5.2. RPA in density functional theory -- 5.3. Sum rules -- 5.4. Pairing correlations and QRPA formalism -- 5.5. Charge-changing QRPA
6. Large-amplitude collective motion -- 6.1. Collective subspace -- 6.2. Adiabatic time-dependent Hartree-Fock theory -- 6.3. Adiabatic self-consistent collective coordinate method -- 6.4. Gaussian overlap approximation of the GCM
7. Finite temperature -- 7.1. A reminder of statistical quantum mechanics -- 7.2. Finite-temperature Hartree-Fock theory -- 7.3. Finite-temperature Hartree-Fock-Bogoliubov theory -- 7.4. Finite-temperature RPA -- 7.5. Beyond mean field
8. Numerical implementations -- 8.1. Configuration space and basis expansions -- 8.2. Lattice techniques -- 8.3. The self-consistent loop -- 8.4. Time-evolution algorithms
9. Calibration of energy functionals -- 9.1. Parameters of energy functionals -- 9.2. Physical observables -- 9.3. Uncertainties of EDF parameters -- 9.4. Propagation of theoretical uncertainties.
Abstract: Energy density functional (EDF) approaches have become over the past twenty years a powerful framework to study the structure and reactions of atomic nuclei. This book gives an updated presentation of non-relativistic and covariant energy functi
Item type Current library Collection Call number Copy number Status Date due Barcode
E-Books MEF eKitap Kütüphanesi
IOP Science eBook - EBA QC793.3.S8 E544 2019eb (Browse shelf (Opens below)) Available IOP_20210093

"Version: 20190101"--Title page verso.

Includes bibliographical references.

1. Non-relativistic energy density functionals -- 1.1. Introduction -- 1.2. Energy density functional kernels -- 1.3. Pairing and Coulomb functionals

2. Covariant energy density functionals -- 2.1. Relativistic description of quantum systems -- 2.2. Symmetry properties of QCD -- 2.3. Effective Lagrangians for nuclear systems -- 2.4. Phenomenological Lagrangians -- 2.5. Derivation of the covar

3. Single-reference and multi-reference formulations -- 3.1. Single-reference implementation of nuclear energy density functionals -- 3.2. Multi-reference implementation of nuclear energy density functionals

4. Time-dependent density functional theory -- 4.1. Time evolution equations -- 4.2. Role of pairing correlations in nuclear dynamics -- 4.3. Local DFT for superfluids -- 4.4. Validation of the TDSLDA : the unitary Fermi gas -- 4.5. Symmetry-bre

5. Small-amplitude collective motion -- 5.1. RPA with a Hamiltonian -- 5.2. RPA in density functional theory -- 5.3. Sum rules -- 5.4. Pairing correlations and QRPA formalism -- 5.5. Charge-changing QRPA

6. Large-amplitude collective motion -- 6.1. Collective subspace -- 6.2. Adiabatic time-dependent Hartree-Fock theory -- 6.3. Adiabatic self-consistent collective coordinate method -- 6.4. Gaussian overlap approximation of the GCM

7. Finite temperature -- 7.1. A reminder of statistical quantum mechanics -- 7.2. Finite-temperature Hartree-Fock theory -- 7.3. Finite-temperature Hartree-Fock-Bogoliubov theory -- 7.4. Finite-temperature RPA -- 7.5. Beyond mean field

8. Numerical implementations -- 8.1. Configuration space and basis expansions -- 8.2. Lattice techniques -- 8.3. The self-consistent loop -- 8.4. Time-evolution algorithms

9. Calibration of energy functionals -- 9.1. Parameters of energy functionals -- 9.2. Physical observables -- 9.3. Uncertainties of EDF parameters -- 9.4. Propagation of theoretical uncertainties.

Energy density functional (EDF) approaches have become over the past twenty years a powerful framework to study the structure and reactions of atomic nuclei. This book gives an updated presentation of non-relativistic and covariant energy functi

PhD students, postdocs and research staff specializing in nuclear theory.

Also available in print.

Mode of access: World Wide Web.

System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.

Nicolas Schunck received his PhD in theoretical nuclear physics from the University of Strasbourg and he is currently a research scientist at Lawrence Livermore National Laboratory. His work is centred on the development and applications of comp

Title from PDF title page (viewed on February 4, 2019).