TY - BOOK AU - Simula,Tapio ED - Morgan & Claypool Publishers, ED - Institute of Physics (Great Britain), TI - Quantised vortices: a handbook of topological excitations T2 - [IOP release 6] SN - 9781643271262 AV - QA925 .S567 2019eb U1 - 532.0595 23 PY - 2019///] CY - San Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) PB - Morgan & Claypool Publishers KW - Vortex-motion KW - Quantum theory KW - Mathematical physics KW - bicssc KW - SCIENCE / Physics / Mathematical & Computational KW - bisacsh N1 - "Version: 20190701"--Title page verso; "A Morgan & Claypool publication as part of IOP Concise Physics"--Title page verso; Includes bibliographical references; part I. Vortices in Flatland. 1. Vortices -- 1.1. Space-time symmetries -- 1.2. Quantum liquids -- 1.3. Vorticity in classical fluids -- 1.4. Vorticity in quantum liquids; 2. Quasiparticle picture -- 2.1. Emergence of quasiparticles -- 2.2. Boson commutation relations -- 2.3. Fermion anticommutation relations -- 2.4. Majorana relations -- 2.5. Anyon quasiparticles -- 2.6. Non-abelian anyon quasiparticles -- 2.7. B; 3. Cold atoms -- 3.1. Scalar Bose-Einstein condensates -- 3.2. Bose zero-temperature energy functional -- 3.3. Thomas-Fermi relations -- 3.4. Healing length -- 3.5. Thermodynamic relations -- 3.6. Quantum hydrodynamic equations -- 3.7. Two-compo; 4. Topological invariants and quantities -- 4.1. Topology and ordered structures -- 4.2. A game of lines and loops -- 4.3. Maps and order parameters -- 4.4. Homotopy classification of defects -- 4.5. Burgers vector -- 4.6. Gauss-Bonnet theorem -; 5. Topological excitations -- 5.1. Topological defects -- 5.2. Soliton -- 5.3. Bright soliton -- 5.4. Grey and dark soliton -- 5.5. Solitonic vortex -- 5.6. Plain vortex -- 5.7. Polynomial vortex -- 5.8. Coherence vortex -- 5.9. Fractional vorte; 6. Structure of a plain vortex -- 6.1. Vortex uncertainty principle -- 6.2. Kelvon -- 6.3. Circulation quantum -- 6.4. Vortex energy -- 6.5. Thermodynamic stability -- 6.6. Spectral, energetic stability -- 6.7. Dynamical Lyapunov stability -- 6; 7. Vortex dynamics -- 7.1. Adiabatic vortex dynamics -- 7.2. Vortex force and velocity -- 7.3. Magnus effect and mutual induction -- 7.4. Vortex pair creation and annihilation -- 7.5. Onsager point vortex model -- 7.6. Vortex-particle duality --; 8. Vortex production in Bose-Einstein condensates -- 8.1. Coherent coupling of internal states -- 8.2. Laguerre-Gauss laser modes -- 8.3. Topological angular momentum conversion -- 8.4. Rotating bucket -- 8.5. Rotating thermal cloud -- 8.6. Stir; 9. Topological quantum computation -- 9.1. Non-abelian anyons -- 9.2. Topological qubits -- 9.3. Quantum dimension -- 9.4. Majorana Ising anyon model -- 9.5. Fibonacci anyon model -- 9.6. Model k anyons -- 9.7. Non-abelian vortex anyons -- 9.8.; 10. Two-dimensional quantum turbulence -- 10.1. Regular and chaotic few-vortex dynamics -- 10.2. Inverse energy and direct enstrophy cascades -- 10.3. Vortex near-field spectrum -- 10.4. Vortex far-field spectrum -- 10.5. Vortex dipole spectrum; 11. Vortex states of matter in Flatland -- 11.1. BCS superconductivity -- 11.2. Meissner effect -- 11.3. Type-II superconductors -- 11.4. Abrikosov vortex lattice -- 11.5. Vortex pinning and creep motion -- 11.6. Vortex matter in rotating superf; 12. Superfluid universe -- 12.1. Vacuum -- 12.2. Speed of light -- 12.3. Photon -- 12.4. Particles and antiparticles -- 12.5. Positronium -- 12.6. Pair creation and annihilation -- 12.7. Photon emission and absorption -- 12.8. Charge -- 12.9. Sp; General/trade; Also available in print N2 - Vortices comprising swirling motion of matter are observable in classical systems at all scales ranging from atomic size to the scale of galaxies. In quantum mechanical systems, such vortices are robust entities whose behaviours are governed by UR - https://ezproxy.mef.edu.tr/login?url=https://iopscience.iop.org/book/978-1-64327-126-2 ER -