Crystal engineering : a textbook / Gautam R. Desiraju, Indian Institute of Science, Jagadese J Vittal, National University of Singapore, Arunachalam Ramanan, Indian Institute of Technology Delhi.
Material type:
Item type | Current library | Shelving location | Call number | Copy number | Status | Date due | Barcode |
---|---|---|---|---|---|---|---|
Books | MEF Üniversitesi Kütüphanesi | Genel Koleksiyon | QD 905.2 .D47 2011 (Browse shelf (Opens below)) | Available | 0003444 |
Includes bibliographical references and index.
Machine generated contents note: 1.Crystal Engineering -- 1.1.X-ray Crystallography -- 1.2.Organic Solid State Chemistry -- 1.3.The Crystal as a Supramolecular Entity -- 1.4.Modern Crystal Engineering -- 1.4.1.Horizontal and Vertical Divisions of Chemistry -- 1.4.2.Organic Crystal Engineering -- 1.4.3.Metal-Organic Crystal Engineering -- 1.4.4.Properties of Crystals -- 1.5.Summary -- 1.6.Further Reading -- 1.7.Problems -- 2.Intermolecular Interactions -- 2.1.General Properties -- 2.2.Van Der Waals Interactions -- 2.2.1.Close Packing -- 2.3.Hydrogen Bonds -- 2.3.1.Weak Hydrogen Bonds -- 2.3.2.Hierarchies of Hydrogen Bonds -- 2.4.Halogen Bonds -- 2.5.Other Interactions -- 2.6.Methods of Study of Interactions -- 2.6.1.Crystallography -- 2.6.2.Crystallographic Databases -- 2.6.2.1.Graph Sets -- 2.6.3.Spectroscopy -- 2.6.4.Computational Methods -- 2.6.4.1.Crystal Structure Prediction -- 2.7.Analysis of Typical Crystal Structures -- 2.8.Summary -- 2.9.Further Reading -- 2.10.Problems -- 3.Crystal Design Strategies -- 3.1.Synthesis in Chemistry -- 3.2.Supramolecular Chemistry -- 3.3.The Synthon in Crystal Engineering -- 3.3.1.Some Representative Synthons -- 3.3.2.The Carboxyl Dimer Synthon -- 3.3.3.Structural Insulation in Crystal Engineering -- 3.3.4.Discovery of New Synthons -- 3.3.5.Two-dimensional Patterns -- 3.3.6.Higher Dimensional Control -- 3.3.7.Coordination Polymers as Networks -- 3.3.8.Useful Synthons -- 3.4.Summary -- 3.5.Further Reading -- 3.6.Problems -- 4.Crystallization and Crystal Growth -- 4.1.Crystallization of Organic Solids -- 4.1.1.Solution Crystallization -- 4.1.1.1.Antisolvent Crystallization -- 4.1.2.Melt Crystallization -- 4.1.3.Sublimation -- 4.1.4.Hydrothermal and Solvothermal Crystallization -- 4.1.5.Crystallization from a Solid Phase -- 4.1.5.1.Single Crystal to Single Crystal (SCSC) Transformations -- 4.1.5.2.Mechanochemistry -- 4.1.6.Crystallization of Chiral Solids -- 4.2.Nucleation -- 4.2.1.Nucleation as Distinct from Crystal Growth -- 4.3.Thermodynamics and Kinetics of Crystallization -- 4.4.Crystal Growth -- 4.4.1.The Terrace-Ledge-Kink Model of Crystal Growth -- 4.4.2.Two-dimensional Nucleation versus Growth at Dislocations -- 4.4.3.Ostwald Ripening -- 4.5.Crystal Morphology and Habit -- 4.5.1.Crystal Morphology and Crystal Symmetry -- 4.6.Crystal Morphology Engineering -- 4.6.1.Tailor-made Inhibitors -- 4.7.Why is it that all Compounds don't seem to Crystallize Equally Well or Equally Quickly? -- 4.8.Summary -- 4.9.Further Reading -- 4.10.Problems -- 5.Polymorphism -- 5.1.What is Polymorphism? -- 5.1.1.Polymorphism and the Pharmaceutical Industry -- 5.1.2.Some Simple Definitions -- 5.2.Occurrence of Polymorphism -- 5.2.1.Polymorphism and Intermolecular Interactions -- 5.3.Thermodynamics of Polymorphism -- 5.3.1.Free Energy Diagrams and Stability of Polymorphs -- 5.3.2.Monotropes and Enantiotropes -- 5.3.2.1.Burger-Ramberger Rules -- 5.3.2.2.Distinguishing between Enantiotropes and Monotropes -- 5.4.Thermodynamics versus Kinetics and the Fonnation of Polymorphs -- 5.5.Methods of Polymorph Characterization -- 5.5.1.Hot Stage Microscopy -- 5.5.2.X-ray Diffraction -- 5.5.3.Thermal Analysis -- 5.6.Properties of Polymorphs -- 5.6.1.Color -- 5.6.2.Mechanical Properties -- 5.6.3.Chemical Reactivity -- 5.6.3.1.Polymorphism in Energetic Materials -- 5.6.3.2.Polymorphism and Reactivity of Drugs -- 5.7.Case Studies from the Pharmaceutical Industry -- 5.7.1.Ranitidine -- 5.7.2.Ritonavir -- 5.7.3.Aspirin -- 5.7.4.Omeprazole -- 5.8.Polymorphism Today -- 5.9.Summary -- 5.10.Further Reading -- 5.11.Problems -- 6.Multi-component Crystals -- 6.1.General Classification and Nomenclature -- 6.2.Solid Solutions -- 6.3.Host-Guest Compounds -- 6.3.1.Design of Hosts -- 6.4.Solvates and Hydrates -- 6.5.Donor-Acceptor Complexes -- 6.6.Co-crystals -- 6.6.1.Hydrogen Bonded Co-crystals -- 6.6.2.Pharmaceutical Co-crystals -- 6.6.2.1.Design of Pharmaceutical Co-crystals -- 6.6.2.2.Properties of Pharmaceutical Co-crystals -- 6.6.2.3.Co-crystals and Salts -- 6.7.Summary -- 6.8.Further Reading -- 6.9.Problems -- 7.Coordination Polymers -- 7.1.What are Coordination Polymers? -- 7.2.Classification Schemes -- 7.3.Crystal Design Strategies -- 7.4.Network Topologies -- 7.4.1.Net Symbols and Nomenclature -- 7.4.2.Topologies of Three-dimensional Structures -- 7.4.2.1.Diamond Topology -- 7.4.2.2.NaCl Topology -- 7.4.2.3.NbO and CdSO4 Topologies -- 7.4.2.4.PtS and Related Topologies -- 7.5.Supramolecular Isomerism -- 7.6.Interpenetration -- 7.7.Porous Coordination Polymers -- 7.7.1.Pore Size -- 7.7.2.Gas Sorption and Storage -- 7.8.Properties and Applications -- 7.8.1.Magnetism, Magnetic Ordering and Spin Crossover -- 7.8.2.Luminescence and Sensing -- 7.8.3.Nonlinear Optical Properties -- 7.8.4.Proton Conductivity -- 7.8.5.Ferroelectricity -- 7.8.6.Birefringence -- 7.8.7.Negative Thermal Expansion -- 7.8.8.Processability -- 7.8.9.Chemical Reactivity -- 7.8.9.1.Structural Transformations on Heating -- 7.8.9.2.[2+2] Cycloaddition Reactions -- 7.8.9.3.Structural Transformations due to Loss of Solvents -- 7.8.9.4.Reactivity of Supramolecular Isomers -- 7.9.Building Approach: Influence of Experimental Conditions -- 7.10.Summary -- 7.11.Further Reading -- 7.12.Problems.