Crystal engineering : a textbook / Gautam R. Desiraju, Indian Institute of Science, Jagadese J Vittal, National University of Singapore, Arunachalam Ramanan, Indian Institute of Technology Delhi.

By: Desiraju, G. R. (Gautam R.) [author.]Contributor(s): Vittal, Jagadese J [author.] | Ramanan, Arunachalam [author.]Material type: TextTextLanguage: English Hackensack, NJ : World Scientific ; IISc Press, 2011©2011 Description: xiv, 216 pages : illustrations ; 28 cmContent type: text Media type: unmediated Carrier type: volumeISBN: 9789814338752 (hardback)Subject(s): Crystallography -- Textbooks | Crystal growth | Molecular crystalsLOC classification: QD905.2 .D47 2011
Contents:
Machine generated contents note: 1.Crystal Engineering -- 1.1.X-ray Crystallography -- 1.2.Organic Solid State Chemistry -- 1.3.The Crystal as a Supramolecular Entity -- 1.4.Modern Crystal Engineering -- 1.4.1.Horizontal and Vertical Divisions of Chemistry -- 1.4.2.Organic Crystal Engineering -- 1.4.3.Metal-Organic Crystal Engineering -- 1.4.4.Properties of Crystals -- 1.5.Summary -- 1.6.Further Reading -- 1.7.Problems -- 2.Intermolecular Interactions -- 2.1.General Properties -- 2.2.Van Der Waals Interactions -- 2.2.1.Close Packing -- 2.3.Hydrogen Bonds -- 2.3.1.Weak Hydrogen Bonds -- 2.3.2.Hierarchies of Hydrogen Bonds -- 2.4.Halogen Bonds -- 2.5.Other Interactions -- 2.6.Methods of Study of Interactions -- 2.6.1.Crystallography -- 2.6.2.Crystallographic Databases -- 2.6.2.1.Graph Sets -- 2.6.3.Spectroscopy -- 2.6.4.Computational Methods -- 2.6.4.1.Crystal Structure Prediction -- 2.7.Analysis of Typical Crystal Structures -- 2.8.Summary -- 2.9.Further Reading -- 2.10.Problems -- 3.Crystal Design Strategies -- 3.1.Synthesis in Chemistry -- 3.2.Supramolecular Chemistry -- 3.3.The Synthon in Crystal Engineering -- 3.3.1.Some Representative Synthons -- 3.3.2.The Carboxyl Dimer Synthon -- 3.3.3.Structural Insulation in Crystal Engineering -- 3.3.4.Discovery of New Synthons -- 3.3.5.Two-dimensional Patterns -- 3.3.6.Higher Dimensional Control -- 3.3.7.Coordination Polymers as Networks -- 3.3.8.Useful Synthons -- 3.4.Summary -- 3.5.Further Reading -- 3.6.Problems -- 4.Crystallization and Crystal Growth -- 4.1.Crystallization of Organic Solids -- 4.1.1.Solution Crystallization -- 4.1.1.1.Antisolvent Crystallization -- 4.1.2.Melt Crystallization -- 4.1.3.Sublimation -- 4.1.4.Hydrothermal and Solvothermal Crystallization -- 4.1.5.Crystallization from a Solid Phase -- 4.1.5.1.Single Crystal to Single Crystal (SCSC) Transformations -- 4.1.5.2.Mechanochemistry -- 4.1.6.Crystallization of Chiral Solids -- 4.2.Nucleation -- 4.2.1.Nucleation as Distinct from Crystal Growth -- 4.3.Thermodynamics and Kinetics of Crystallization -- 4.4.Crystal Growth -- 4.4.1.The Terrace-Ledge-Kink Model of Crystal Growth -- 4.4.2.Two-dimensional Nucleation versus Growth at Dislocations -- 4.4.3.Ostwald Ripening -- 4.5.Crystal Morphology and Habit -- 4.5.1.Crystal Morphology and Crystal Symmetry -- 4.6.Crystal Morphology Engineering -- 4.6.1.Tailor-made Inhibitors -- 4.7.Why is it that all Compounds don't seem to Crystallize Equally Well or Equally Quickly? -- 4.8.Summary -- 4.9.Further Reading -- 4.10.Problems -- 5.Polymorphism -- 5.1.What is Polymorphism? -- 5.1.1.Polymorphism and the Pharmaceutical Industry -- 5.1.2.Some Simple Definitions -- 5.2.Occurrence of Polymorphism -- 5.2.1.Polymorphism and Intermolecular Interactions -- 5.3.Thermodynamics of Polymorphism -- 5.3.1.Free Energy Diagrams and Stability of Polymorphs -- 5.3.2.Monotropes and Enantiotropes -- 5.3.2.1.Burger-Ramberger Rules -- 5.3.2.2.Distinguishing between Enantiotropes and Monotropes -- 5.4.Thermodynamics versus Kinetics and the Fonnation of Polymorphs -- 5.5.Methods of Polymorph Characterization -- 5.5.1.Hot Stage Microscopy -- 5.5.2.X-ray Diffraction -- 5.5.3.Thermal Analysis -- 5.6.Properties of Polymorphs -- 5.6.1.Color -- 5.6.2.Mechanical Properties -- 5.6.3.Chemical Reactivity -- 5.6.3.1.Polymorphism in Energetic Materials -- 5.6.3.2.Polymorphism and Reactivity of Drugs -- 5.7.Case Studies from the Pharmaceutical Industry -- 5.7.1.Ranitidine -- 5.7.2.Ritonavir -- 5.7.3.Aspirin -- 5.7.4.Omeprazole -- 5.8.Polymorphism Today -- 5.9.Summary -- 5.10.Further Reading -- 5.11.Problems -- 6.Multi-component Crystals -- 6.1.General Classification and Nomenclature -- 6.2.Solid Solutions -- 6.3.Host-Guest Compounds -- 6.3.1.Design of Hosts -- 6.4.Solvates and Hydrates -- 6.5.Donor-Acceptor Complexes -- 6.6.Co-crystals -- 6.6.1.Hydrogen Bonded Co-crystals -- 6.6.2.Pharmaceutical Co-crystals -- 6.6.2.1.Design of Pharmaceutical Co-crystals -- 6.6.2.2.Properties of Pharmaceutical Co-crystals -- 6.6.2.3.Co-crystals and Salts -- 6.7.Summary -- 6.8.Further Reading -- 6.9.Problems -- 7.Coordination Polymers -- 7.1.What are Coordination Polymers? -- 7.2.Classification Schemes -- 7.3.Crystal Design Strategies -- 7.4.Network Topologies -- 7.4.1.Net Symbols and Nomenclature -- 7.4.2.Topologies of Three-dimensional Structures -- 7.4.2.1.Diamond Topology -- 7.4.2.2.NaCl Topology -- 7.4.2.3.NbO and CdSO4 Topologies -- 7.4.2.4.PtS and Related Topologies -- 7.5.Supramolecular Isomerism -- 7.6.Interpenetration -- 7.7.Porous Coordination Polymers -- 7.7.1.Pore Size -- 7.7.2.Gas Sorption and Storage -- 7.8.Properties and Applications -- 7.8.1.Magnetism, Magnetic Ordering and Spin Crossover -- 7.8.2.Luminescence and Sensing -- 7.8.3.Nonlinear Optical Properties -- 7.8.4.Proton Conductivity -- 7.8.5.Ferroelectricity -- 7.8.6.Birefringence -- 7.8.7.Negative Thermal Expansion -- 7.8.8.Processability -- 7.8.9.Chemical Reactivity -- 7.8.9.1.Structural Transformations on Heating -- 7.8.9.2.[2+2] Cycloaddition Reactions -- 7.8.9.3.Structural Transformations due to Loss of Solvents -- 7.8.9.4.Reactivity of Supramolecular Isomers -- 7.9.Building Approach: Influence of Experimental Conditions -- 7.10.Summary -- 7.11.Further Reading -- 7.12.Problems.
Item type Current library Shelving location Call number Copy number Status Date due Barcode
Books MEF Üniversitesi Kütüphanesi
Genel Koleksiyon QD 905.2 .D47 2011 (Browse shelf (Opens below)) Available 0003444

Includes bibliographical references and index.

Machine generated contents note: 1.Crystal Engineering -- 1.1.X-ray Crystallography -- 1.2.Organic Solid State Chemistry -- 1.3.The Crystal as a Supramolecular Entity -- 1.4.Modern Crystal Engineering -- 1.4.1.Horizontal and Vertical Divisions of Chemistry -- 1.4.2.Organic Crystal Engineering -- 1.4.3.Metal-Organic Crystal Engineering -- 1.4.4.Properties of Crystals -- 1.5.Summary -- 1.6.Further Reading -- 1.7.Problems -- 2.Intermolecular Interactions -- 2.1.General Properties -- 2.2.Van Der Waals Interactions -- 2.2.1.Close Packing -- 2.3.Hydrogen Bonds -- 2.3.1.Weak Hydrogen Bonds -- 2.3.2.Hierarchies of Hydrogen Bonds -- 2.4.Halogen Bonds -- 2.5.Other Interactions -- 2.6.Methods of Study of Interactions -- 2.6.1.Crystallography -- 2.6.2.Crystallographic Databases -- 2.6.2.1.Graph Sets -- 2.6.3.Spectroscopy -- 2.6.4.Computational Methods -- 2.6.4.1.Crystal Structure Prediction -- 2.7.Analysis of Typical Crystal Structures -- 2.8.Summary -- 2.9.Further Reading -- 2.10.Problems -- 3.Crystal Design Strategies -- 3.1.Synthesis in Chemistry -- 3.2.Supramolecular Chemistry -- 3.3.The Synthon in Crystal Engineering -- 3.3.1.Some Representative Synthons -- 3.3.2.The Carboxyl Dimer Synthon -- 3.3.3.Structural Insulation in Crystal Engineering -- 3.3.4.Discovery of New Synthons -- 3.3.5.Two-dimensional Patterns -- 3.3.6.Higher Dimensional Control -- 3.3.7.Coordination Polymers as Networks -- 3.3.8.Useful Synthons -- 3.4.Summary -- 3.5.Further Reading -- 3.6.Problems -- 4.Crystallization and Crystal Growth -- 4.1.Crystallization of Organic Solids -- 4.1.1.Solution Crystallization -- 4.1.1.1.Antisolvent Crystallization -- 4.1.2.Melt Crystallization -- 4.1.3.Sublimation -- 4.1.4.Hydrothermal and Solvothermal Crystallization -- 4.1.5.Crystallization from a Solid Phase -- 4.1.5.1.Single Crystal to Single Crystal (SCSC) Transformations -- 4.1.5.2.Mechanochemistry -- 4.1.6.Crystallization of Chiral Solids -- 4.2.Nucleation -- 4.2.1.Nucleation as Distinct from Crystal Growth -- 4.3.Thermodynamics and Kinetics of Crystallization -- 4.4.Crystal Growth -- 4.4.1.The Terrace-Ledge-Kink Model of Crystal Growth -- 4.4.2.Two-dimensional Nucleation versus Growth at Dislocations -- 4.4.3.Ostwald Ripening -- 4.5.Crystal Morphology and Habit -- 4.5.1.Crystal Morphology and Crystal Symmetry -- 4.6.Crystal Morphology Engineering -- 4.6.1.Tailor-made Inhibitors -- 4.7.Why is it that all Compounds don't seem to Crystallize Equally Well or Equally Quickly? -- 4.8.Summary -- 4.9.Further Reading -- 4.10.Problems -- 5.Polymorphism -- 5.1.What is Polymorphism? -- 5.1.1.Polymorphism and the Pharmaceutical Industry -- 5.1.2.Some Simple Definitions -- 5.2.Occurrence of Polymorphism -- 5.2.1.Polymorphism and Intermolecular Interactions -- 5.3.Thermodynamics of Polymorphism -- 5.3.1.Free Energy Diagrams and Stability of Polymorphs -- 5.3.2.Monotropes and Enantiotropes -- 5.3.2.1.Burger-Ramberger Rules -- 5.3.2.2.Distinguishing between Enantiotropes and Monotropes -- 5.4.Thermodynamics versus Kinetics and the Fonnation of Polymorphs -- 5.5.Methods of Polymorph Characterization -- 5.5.1.Hot Stage Microscopy -- 5.5.2.X-ray Diffraction -- 5.5.3.Thermal Analysis -- 5.6.Properties of Polymorphs -- 5.6.1.Color -- 5.6.2.Mechanical Properties -- 5.6.3.Chemical Reactivity -- 5.6.3.1.Polymorphism in Energetic Materials -- 5.6.3.2.Polymorphism and Reactivity of Drugs -- 5.7.Case Studies from the Pharmaceutical Industry -- 5.7.1.Ranitidine -- 5.7.2.Ritonavir -- 5.7.3.Aspirin -- 5.7.4.Omeprazole -- 5.8.Polymorphism Today -- 5.9.Summary -- 5.10.Further Reading -- 5.11.Problems -- 6.Multi-component Crystals -- 6.1.General Classification and Nomenclature -- 6.2.Solid Solutions -- 6.3.Host-Guest Compounds -- 6.3.1.Design of Hosts -- 6.4.Solvates and Hydrates -- 6.5.Donor-Acceptor Complexes -- 6.6.Co-crystals -- 6.6.1.Hydrogen Bonded Co-crystals -- 6.6.2.Pharmaceutical Co-crystals -- 6.6.2.1.Design of Pharmaceutical Co-crystals -- 6.6.2.2.Properties of Pharmaceutical Co-crystals -- 6.6.2.3.Co-crystals and Salts -- 6.7.Summary -- 6.8.Further Reading -- 6.9.Problems -- 7.Coordination Polymers -- 7.1.What are Coordination Polymers? -- 7.2.Classification Schemes -- 7.3.Crystal Design Strategies -- 7.4.Network Topologies -- 7.4.1.Net Symbols and Nomenclature -- 7.4.2.Topologies of Three-dimensional Structures -- 7.4.2.1.Diamond Topology -- 7.4.2.2.NaCl Topology -- 7.4.2.3.NbO and CdSO4 Topologies -- 7.4.2.4.PtS and Related Topologies -- 7.5.Supramolecular Isomerism -- 7.6.Interpenetration -- 7.7.Porous Coordination Polymers -- 7.7.1.Pore Size -- 7.7.2.Gas Sorption and Storage -- 7.8.Properties and Applications -- 7.8.1.Magnetism, Magnetic Ordering and Spin Crossover -- 7.8.2.Luminescence and Sensing -- 7.8.3.Nonlinear Optical Properties -- 7.8.4.Proton Conductivity -- 7.8.5.Ferroelectricity -- 7.8.6.Birefringence -- 7.8.7.Negative Thermal Expansion -- 7.8.8.Processability -- 7.8.9.Chemical Reactivity -- 7.8.9.1.Structural Transformations on Heating -- 7.8.9.2.[2+2] Cycloaddition Reactions -- 7.8.9.3.Structural Transformations due to Loss of Solvents -- 7.8.9.4.Reactivity of Supramolecular Isomers -- 7.9.Building Approach: Influence of Experimental Conditions -- 7.10.Summary -- 7.11.Further Reading -- 7.12.Problems.