Quantised vortices : a handbook of topological excitations / Tapio Simula.

By: Simula, Tapio [author.]Contributor(s): Morgan & Claypool Publishers [publisher.] | Institute of Physics (Great Britain) [publisher.]Material type: TextTextSeries: IOP (Series)Release 6 | IOP concise physicsPublisher: San Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) : Morgan & Claypool Publishers, [2019]Distributor: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2019]Description: 1 online resource (various pagings) : illustrations (some color)Content type: text Media type: electronic Carrier type: online resourceISBN: 9781643271262 ebookSubject(s): Vortex-motion | Quantum theory | Mathematical physics | SCIENCE / Physics / Mathematical & ComputationalAdditional physical formats: Print version:: No titleDDC classification: 532.0595 LOC classification: QA925 .S567 2019ebOnline resources: e-book Full-text access Also available in print.
Contents:
part I. Vortices in Flatland. 1. Vortices -- 1.1. Space-time symmetries -- 1.2. Quantum liquids -- 1.3. Vorticity in classical fluids -- 1.4. Vorticity in quantum liquids
2. Quasiparticle picture -- 2.1. Emergence of quasiparticles -- 2.2. Boson commutation relations -- 2.3. Fermion anticommutation relations -- 2.4. Majorana relations -- 2.5. Anyon quasiparticles -- 2.6. Non-abelian anyon quasiparticles -- 2.7. B
3. Cold atoms -- 3.1. Scalar Bose-Einstein condensates -- 3.2. Bose zero-temperature energy functional -- 3.3. Thomas-Fermi relations -- 3.4. Healing length -- 3.5. Thermodynamic relations -- 3.6. Quantum hydrodynamic equations -- 3.7. Two-compo
4. Topological invariants and quantities -- 4.1. Topology and ordered structures -- 4.2. A game of lines and loops -- 4.3. Maps and order parameters -- 4.4. Homotopy classification of defects -- 4.5. Burgers vector -- 4.6. Gauss-Bonnet theorem -
5. Topological excitations -- 5.1. Topological defects -- 5.2. Soliton -- 5.3. Bright soliton -- 5.4. Grey and dark soliton -- 5.5. Solitonic vortex -- 5.6. Plain vortex -- 5.7. Polynomial vortex -- 5.8. Coherence vortex -- 5.9. Fractional vorte
6. Structure of a plain vortex -- 6.1. Vortex uncertainty principle -- 6.2. Kelvon -- 6.3. Circulation quantum -- 6.4. Vortex energy -- 6.5. Thermodynamic stability -- 6.6. Spectral, energetic stability -- 6.7. Dynamical Lyapunov stability -- 6.
7. Vortex dynamics -- 7.1. Adiabatic vortex dynamics -- 7.2. Vortex force and velocity -- 7.3. Magnus effect and mutual induction -- 7.4. Vortex pair creation and annihilation -- 7.5. Onsager point vortex model -- 7.6. Vortex-particle duality --
8. Vortex production in Bose-Einstein condensates -- 8.1. Coherent coupling of internal states -- 8.2. Laguerre-Gauss laser modes -- 8.3. Topological angular momentum conversion -- 8.4. Rotating bucket -- 8.5. Rotating thermal cloud -- 8.6. Stir
9. Topological quantum computation -- 9.1. Non-abelian anyons -- 9.2. Topological qubits -- 9.3. Quantum dimension -- 9.4. Majorana Ising anyon model -- 9.5. Fibonacci anyon model -- 9.6. Model k anyons -- 9.7. Non-abelian vortex anyons -- 9.8.
10. Two-dimensional quantum turbulence -- 10.1. Regular and chaotic few-vortex dynamics -- 10.2. Inverse energy and direct enstrophy cascades -- 10.3. Vortex near-field spectrum -- 10.4. Vortex far-field spectrum -- 10.5. Vortex dipole spectrum
11. Vortex states of matter in Flatland -- 11.1. BCS superconductivity -- 11.2. Meissner effect -- 11.3. Type-II superconductors -- 11.4. Abrikosov vortex lattice -- 11.5. Vortex pinning and creep motion -- 11.6. Vortex matter in rotating superf
12. Superfluid universe -- 12.1. Vacuum -- 12.2. Speed of light -- 12.3. Photon -- 12.4. Particles and antiparticles -- 12.5. Positronium -- 12.6. Pair creation and annihilation -- 12.7. Photon emission and absorption -- 12.8. Charge -- 12.9. Sp
Abstract: Vortices comprising swirling motion of matter are observable in classical systems at all scales ranging from atomic size to the scale of galaxies. In quantum mechanical systems, such vortices are robust entities whose behaviours are governed by

"Version: 20190701"--Title page verso.

"A Morgan & Claypool publication as part of IOP Concise Physics"--Title page verso.

Includes bibliographical references.

part I. Vortices in Flatland. 1. Vortices -- 1.1. Space-time symmetries -- 1.2. Quantum liquids -- 1.3. Vorticity in classical fluids -- 1.4. Vorticity in quantum liquids

2. Quasiparticle picture -- 2.1. Emergence of quasiparticles -- 2.2. Boson commutation relations -- 2.3. Fermion anticommutation relations -- 2.4. Majorana relations -- 2.5. Anyon quasiparticles -- 2.6. Non-abelian anyon quasiparticles -- 2.7. B

3. Cold atoms -- 3.1. Scalar Bose-Einstein condensates -- 3.2. Bose zero-temperature energy functional -- 3.3. Thomas-Fermi relations -- 3.4. Healing length -- 3.5. Thermodynamic relations -- 3.6. Quantum hydrodynamic equations -- 3.7. Two-compo

4. Topological invariants and quantities -- 4.1. Topology and ordered structures -- 4.2. A game of lines and loops -- 4.3. Maps and order parameters -- 4.4. Homotopy classification of defects -- 4.5. Burgers vector -- 4.6. Gauss-Bonnet theorem -

5. Topological excitations -- 5.1. Topological defects -- 5.2. Soliton -- 5.3. Bright soliton -- 5.4. Grey and dark soliton -- 5.5. Solitonic vortex -- 5.6. Plain vortex -- 5.7. Polynomial vortex -- 5.8. Coherence vortex -- 5.9. Fractional vorte

6. Structure of a plain vortex -- 6.1. Vortex uncertainty principle -- 6.2. Kelvon -- 6.3. Circulation quantum -- 6.4. Vortex energy -- 6.5. Thermodynamic stability -- 6.6. Spectral, energetic stability -- 6.7. Dynamical Lyapunov stability -- 6.

7. Vortex dynamics -- 7.1. Adiabatic vortex dynamics -- 7.2. Vortex force and velocity -- 7.3. Magnus effect and mutual induction -- 7.4. Vortex pair creation and annihilation -- 7.5. Onsager point vortex model -- 7.6. Vortex-particle duality --

8. Vortex production in Bose-Einstein condensates -- 8.1. Coherent coupling of internal states -- 8.2. Laguerre-Gauss laser modes -- 8.3. Topological angular momentum conversion -- 8.4. Rotating bucket -- 8.5. Rotating thermal cloud -- 8.6. Stir

9. Topological quantum computation -- 9.1. Non-abelian anyons -- 9.2. Topological qubits -- 9.3. Quantum dimension -- 9.4. Majorana Ising anyon model -- 9.5. Fibonacci anyon model -- 9.6. Model k anyons -- 9.7. Non-abelian vortex anyons -- 9.8.

10. Two-dimensional quantum turbulence -- 10.1. Regular and chaotic few-vortex dynamics -- 10.2. Inverse energy and direct enstrophy cascades -- 10.3. Vortex near-field spectrum -- 10.4. Vortex far-field spectrum -- 10.5. Vortex dipole spectrum

11. Vortex states of matter in Flatland -- 11.1. BCS superconductivity -- 11.2. Meissner effect -- 11.3. Type-II superconductors -- 11.4. Abrikosov vortex lattice -- 11.5. Vortex pinning and creep motion -- 11.6. Vortex matter in rotating superf

12. Superfluid universe -- 12.1. Vacuum -- 12.2. Speed of light -- 12.3. Photon -- 12.4. Particles and antiparticles -- 12.5. Positronium -- 12.6. Pair creation and annihilation -- 12.7. Photon emission and absorption -- 12.8. Charge -- 12.9. Sp

Vortices comprising swirling motion of matter are observable in classical systems at all scales ranging from atomic size to the scale of galaxies. In quantum mechanical systems, such vortices are robust entities whose behaviours are governed by

General/trade.

Also available in print.

Mode of access: World Wide Web.

System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.

Tapio Simula was awarded a D.Sc.(Tech.) degree in 2003 by the Helsinki University of Technology. His research interests include the physics of quantum vortices and superfluidity in Bose-Einstein condensates. He is currently an Australian Researc

Title from PDF title page (viewed on September 5, 2019).