Quantised vortices : a handbook of topological excitations / Tapio Simula.
Material type:
Item type | Current library | Collection | Call number | Copy number | Status | Date due | Barcode |
---|---|---|---|---|---|---|---|
E-Books | MEF eKitap Kütüphanesi | IOP Science eBook - EBA | QA925 .S567 2019eb (Browse shelf (Opens below)) | Available | IOP_20210127 |
Browsing MEF eKitap Kütüphanesi shelves Close shelf browser (Hides shelf browser)
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
QA805 .D553 2019eb vol. 4 Classical mechanics. Volume 4, The universal law of gravitation / | QA805 .D553 2019eb vol. 5 Classical mechanics. Volume 5, Conservation laws and rotational motion / | QA845 .R686 2019eb Nonlinear dynamics : a hands-on introductory survey / | QA925 .S567 2019eb Quantised vortices : a handbook of topological excitations / | QA927 .T646 2018eb Nonlinear waves : theory, computer simulation, experiment / | QB213 .K346 2018eb Measuring time : frequency measurements and related developments in physics / | QB362.T9 R445 2019eb Keplerian ellipses : the physics of the gravitational two-body problem / |
"Version: 20190701"--Title page verso.
"A Morgan & Claypool publication as part of IOP Concise Physics"--Title page verso.
Includes bibliographical references.
part I. Vortices in Flatland. 1. Vortices -- 1.1. Space-time symmetries -- 1.2. Quantum liquids -- 1.3. Vorticity in classical fluids -- 1.4. Vorticity in quantum liquids
2. Quasiparticle picture -- 2.1. Emergence of quasiparticles -- 2.2. Boson commutation relations -- 2.3. Fermion anticommutation relations -- 2.4. Majorana relations -- 2.5. Anyon quasiparticles -- 2.6. Non-abelian anyon quasiparticles -- 2.7. B
3. Cold atoms -- 3.1. Scalar Bose-Einstein condensates -- 3.2. Bose zero-temperature energy functional -- 3.3. Thomas-Fermi relations -- 3.4. Healing length -- 3.5. Thermodynamic relations -- 3.6. Quantum hydrodynamic equations -- 3.7. Two-compo
4. Topological invariants and quantities -- 4.1. Topology and ordered structures -- 4.2. A game of lines and loops -- 4.3. Maps and order parameters -- 4.4. Homotopy classification of defects -- 4.5. Burgers vector -- 4.6. Gauss-Bonnet theorem -
5. Topological excitations -- 5.1. Topological defects -- 5.2. Soliton -- 5.3. Bright soliton -- 5.4. Grey and dark soliton -- 5.5. Solitonic vortex -- 5.6. Plain vortex -- 5.7. Polynomial vortex -- 5.8. Coherence vortex -- 5.9. Fractional vorte
6. Structure of a plain vortex -- 6.1. Vortex uncertainty principle -- 6.2. Kelvon -- 6.3. Circulation quantum -- 6.4. Vortex energy -- 6.5. Thermodynamic stability -- 6.6. Spectral, energetic stability -- 6.7. Dynamical Lyapunov stability -- 6.
7. Vortex dynamics -- 7.1. Adiabatic vortex dynamics -- 7.2. Vortex force and velocity -- 7.3. Magnus effect and mutual induction -- 7.4. Vortex pair creation and annihilation -- 7.5. Onsager point vortex model -- 7.6. Vortex-particle duality --
8. Vortex production in Bose-Einstein condensates -- 8.1. Coherent coupling of internal states -- 8.2. Laguerre-Gauss laser modes -- 8.3. Topological angular momentum conversion -- 8.4. Rotating bucket -- 8.5. Rotating thermal cloud -- 8.6. Stir
9. Topological quantum computation -- 9.1. Non-abelian anyons -- 9.2. Topological qubits -- 9.3. Quantum dimension -- 9.4. Majorana Ising anyon model -- 9.5. Fibonacci anyon model -- 9.6. Model k anyons -- 9.7. Non-abelian vortex anyons -- 9.8.
10. Two-dimensional quantum turbulence -- 10.1. Regular and chaotic few-vortex dynamics -- 10.2. Inverse energy and direct enstrophy cascades -- 10.3. Vortex near-field spectrum -- 10.4. Vortex far-field spectrum -- 10.5. Vortex dipole spectrum
11. Vortex states of matter in Flatland -- 11.1. BCS superconductivity -- 11.2. Meissner effect -- 11.3. Type-II superconductors -- 11.4. Abrikosov vortex lattice -- 11.5. Vortex pinning and creep motion -- 11.6. Vortex matter in rotating superf
12. Superfluid universe -- 12.1. Vacuum -- 12.2. Speed of light -- 12.3. Photon -- 12.4. Particles and antiparticles -- 12.5. Positronium -- 12.6. Pair creation and annihilation -- 12.7. Photon emission and absorption -- 12.8. Charge -- 12.9. Sp
Vortices comprising swirling motion of matter are observable in classical systems at all scales ranging from atomic size to the scale of galaxies. In quantum mechanical systems, such vortices are robust entities whose behaviours are governed by
General/trade.
Also available in print.
Mode of access: World Wide Web.
System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.
Tapio Simula was awarded a D.Sc.(Tech.) degree in 2003 by the Helsinki University of Technology. His research interests include the physics of quantum vortices and superfluidity in Bose-Einstein condensates. He is currently an Australian Researc
Title from PDF title page (viewed on September 5, 2019).