Fundamentals of quantum entanglement / F.J. Duarte.

By: Duarte, F. J. (Frank J.) [author.]Contributor(s): Institute of Physics (Great Britain) [publisher.]Material type: TextTextSeries: IOP (Series)Release 6 | IOP expanding physics | IOP series in coherent sources and applicationsPublisher: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2019]Description: 1 online resource (various pagings) : illustrations (some color)Content type: text Media type: electronic Carrier type: online resourceISBN: 9780750322287 ebookSubject(s): Quantum entanglement | Optical physics | SCIENCE / Physics / Optics & LightAdditional physical formats: Print version:: No titleDDC classification: 539.725 LOC classification: QC174.17.E58 D834 2019ebOnline resources: e-book Full-text access Also available in print.
Contents:
1. Introduction -- 1.1. Introduction -- 1.2. A few words on quantum mechanics -- 1.3. Ward's observation -- 1.4. History of quantum entanglement -- 1.5. The field of quantum entanglement -- 1.6. Fundamentals of Quantum Entanglement -- 1.7. Inten
2. Dirac's contribution -- 2.1. Introduction -- 2.2. Dirac's pair theory -- 2.3. Dirac's notation -- 2.4. Dirac's notation in N-slit interferometers -- 2.5. Semi coherent interference -- 2.6. From quantum probabilities to measurable intensities
3. The Einstein-Podolsky-Rosen (EPR) paper -- 3.1. Introduction -- 3.2. EPR's doubts on quantum mechanics -- 3.3. EPR's definition of a correct theory
4. The Schr�odinger papers -- 4.1. Introduction -- 4.2. The first Schr�odinger paper -- 4.3. The second Schr�odinger paper
5. Wheeler's paper -- 5.1. Introduction -- 5.2. Wheeler's paper's significance to quantum theory -- 5.3. Wheeler's paper's significance to quantum experiments
6. The probability amplitude for quantum entanglement -- 6.1. Introduction -- 6.2. The Pryce-Ward paper -- 6.3. Ward's doctoral thesis -- 6.4. Summary
7. The quantum entanglement experiment -- 7.1. Introduction -- 7.2. The quantum entanglement experiment -- 7.3. Historical notes
8. The annihilation quantum entanglement experiments -- 8.1. Introduction -- 8.2. The first three quantum entanglement experiments -- 8.3. Further significance of the annihilation experiments
9. The Bohm and Aharonov paper -- 9.1. Introduction -- 9.2. Significance to the development of quantum entanglement research -- 9.3. Philosophy and physics
10. Bell's theorem -- 10.1. Introduction -- 10.2. von Neumann's work -- 10.3. Bell's theorem or Bell's inequalities -- 10.4. An additional perspective on Bell's theorem -- 10.5. Example -- 10.6. More philosophy and physics
11. Feynman's Hamiltonians -- 11.1. Introduction -- 11.2. Probability amplitudes via Hamiltonians �a la Feynman -- 11.3. Arrival to quantum entanglement probability amplitudes -- 11.4. Discussion
12. The second Wu quantum entanglement experiment -- 12.1. Introduction -- 12.2. Salient features -- 12.3. Bell's theorem and hidden variables
13. The hidden variable theory experiments -- 13.1. Introduction -- 13.2. Testing for local hidden variable theories -- 13.3. Early optical experiment -- 13.4. Observations and discussion
14. The optical quantum entanglement experiments -- 14.1. Introduction -- 14.2. The Aspect experiments -- 14.3. Observations and discussion
15. The quantum entanglement probability amplitude 1947-1992 -- 15.1. Introduction -- 15.2. The quantum entanglement probability amplitude 1947-92 -- 15.3. Observations and discussion
16. The GHZ probability amplitudes -- 16.1. Introduction -- 16.2. The GHZ probability amplitudes -- 16.3. Observations and discussion
17. The interferometric derivation of the quantum entanglement probability amplitude for n = N = 2 -- 17.1. Introduction -- 17.2. The meaning of the Dirac-Feynman probability amplitude -- 17.3. The derivation of the quantum entanglement probabil
18. The interferometric derivation of the quantum entanglement probability amplitude for n = N = 2p1s, 2p2s, 2p3s, 2p4s, ... 2prs -- 18.1. Introduction -- 18.2. The quantum entanglement probabili
19. The interferometric derivation of the quantum entanglement probability amplitudes for n = N = 3, 6 -- 19.1. Introduction -- 19.2. The quantum entanglement probability amplitude for n = N = 3 -- 19.3. The quantum entanglement probability ampl
20. What happens with the entanglement at n = 1 and N = 2? -- 20.1. Introduction -- 20.2. Reversibility : from entanglement to interference -- 20.3. Schematics -- 20.4. Experimental and theoretical perspectives -- 20.5. Interference for N slits
21. Quantum entanglement probability amplitudes and Bell's theorem -- 21.1. Introduction -- 21.2. Probability amplitudes -- 21.3. Quantum polarization -- 21.4. Quantum probabilities and Bell's theorem -- 21.5. Example -- 21.6. Discussion
22. Cryptography via quantum entanglement -- 22.1. Introduction -- 22.2. Measurement protocol -- 22.3. Experiments
23. Quantum entanglement and teleportation -- 23.1. Introduction -- 23.2. The mechanics of teleportation -- 23.3. Technology
24. Quantum entanglement and quantum computing -- 24.1. Introduction -- 24.2. Entropy -- 24.3. Qbits -- 24.4. Quantum entanglement and Pauli matrices -- 24.5. Pauli matrices and quantum entanglement -- 24.6. Quantum gates -- 24.7. The Hadamard m
25. Space-to-space and space-to-Earth communications via quantum entanglement -- 25.1. Introduction -- 25.2. Space-to-space configurations -- 25.3. The space-to-Earth experiment -- 25.4. Further horizons
26. Space-to-space quantum interferometric communications : an alternative to quantum entanglement communications? -- 26.1. Introduction -- 26.2. The generalized N-slit quantum interference equations -- 26.3. The generation and transmission of i
27. Quanta pair sources for quantum entanglement experiments -- 27.1. Introduction -- 27.2. Positron-electron annihilation -- 27.3. Atomic Ca emission -- 27.4. Type I SPDC -- 27.5. Type II SPDC -- 27.6. Further horizons
28. More on quantum entanglement -- 28.1. Introduction -- 28.2. Consequences of the EPR paper -- 28.3. Hidden variable theories -- 28.4. The perspectives of EPR and Schr�odinger on quantum entanglement -- 28.5. Indistinguishability and Dirac
29. On the interpretation of quantum mechanics -- 29.1. Introduction -- 29.2. Quantum critical -- 29.3. Pragmatic perspective -- 29.4. Fundamental principles -- 29.5. The Dirac-Feynman-Lamb doctrine -- 29.6. The importance of the probability amp
Abstract: Quantum entanglement (QE) is undoubtedly one of the most, if not the most, mysterious and yet most promising subjects of current physics. With applications in cryptographic space-to-space, space-to-earth, and fibre communications, in addition to
Item type Current library Collection Call number Copy number Status Date due Barcode
E-Books MEF eKitap Kütüphanesi
IOP Science eBook - EBA QC174.17.E58 D834 2019eb (Browse shelf (Opens below)) Available IOP_20210119

"Version: 20191001"--Title page verso.

Includes bibliographical references and index.

1. Introduction -- 1.1. Introduction -- 1.2. A few words on quantum mechanics -- 1.3. Ward's observation -- 1.4. History of quantum entanglement -- 1.5. The field of quantum entanglement -- 1.6. Fundamentals of Quantum Entanglement -- 1.7. Inten

2. Dirac's contribution -- 2.1. Introduction -- 2.2. Dirac's pair theory -- 2.3. Dirac's notation -- 2.4. Dirac's notation in N-slit interferometers -- 2.5. Semi coherent interference -- 2.6. From quantum probabilities to measurable intensities

3. The Einstein-Podolsky-Rosen (EPR) paper -- 3.1. Introduction -- 3.2. EPR's doubts on quantum mechanics -- 3.3. EPR's definition of a correct theory

4. The Schr�odinger papers -- 4.1. Introduction -- 4.2. The first Schr�odinger paper -- 4.3. The second Schr�odinger paper

5. Wheeler's paper -- 5.1. Introduction -- 5.2. Wheeler's paper's significance to quantum theory -- 5.3. Wheeler's paper's significance to quantum experiments

6. The probability amplitude for quantum entanglement -- 6.1. Introduction -- 6.2. The Pryce-Ward paper -- 6.3. Ward's doctoral thesis -- 6.4. Summary

7. The quantum entanglement experiment -- 7.1. Introduction -- 7.2. The quantum entanglement experiment -- 7.3. Historical notes

8. The annihilation quantum entanglement experiments -- 8.1. Introduction -- 8.2. The first three quantum entanglement experiments -- 8.3. Further significance of the annihilation experiments

9. The Bohm and Aharonov paper -- 9.1. Introduction -- 9.2. Significance to the development of quantum entanglement research -- 9.3. Philosophy and physics

10. Bell's theorem -- 10.1. Introduction -- 10.2. von Neumann's work -- 10.3. Bell's theorem or Bell's inequalities -- 10.4. An additional perspective on Bell's theorem -- 10.5. Example -- 10.6. More philosophy and physics

11. Feynman's Hamiltonians -- 11.1. Introduction -- 11.2. Probability amplitudes via Hamiltonians �a la Feynman -- 11.3. Arrival to quantum entanglement probability amplitudes -- 11.4. Discussion

12. The second Wu quantum entanglement experiment -- 12.1. Introduction -- 12.2. Salient features -- 12.3. Bell's theorem and hidden variables

13. The hidden variable theory experiments -- 13.1. Introduction -- 13.2. Testing for local hidden variable theories -- 13.3. Early optical experiment -- 13.4. Observations and discussion

14. The optical quantum entanglement experiments -- 14.1. Introduction -- 14.2. The Aspect experiments -- 14.3. Observations and discussion

15. The quantum entanglement probability amplitude 1947-1992 -- 15.1. Introduction -- 15.2. The quantum entanglement probability amplitude 1947-92 -- 15.3. Observations and discussion

16. The GHZ probability amplitudes -- 16.1. Introduction -- 16.2. The GHZ probability amplitudes -- 16.3. Observations and discussion

17. The interferometric derivation of the quantum entanglement probability amplitude for n = N = 2 -- 17.1. Introduction -- 17.2. The meaning of the Dirac-Feynman probability amplitude -- 17.3. The derivation of the quantum entanglement probabil

18. The interferometric derivation of the quantum entanglement probability amplitude for n = N = 2p1s, 2p2s, 2p3s, 2p4s, ... 2prs -- 18.1. Introduction -- 18.2. The quantum entanglement probabili

19. The interferometric derivation of the quantum entanglement probability amplitudes for n = N = 3, 6 -- 19.1. Introduction -- 19.2. The quantum entanglement probability amplitude for n = N = 3 -- 19.3. The quantum entanglement probability ampl

20. What happens with the entanglement at n = 1 and N = 2? -- 20.1. Introduction -- 20.2. Reversibility : from entanglement to interference -- 20.3. Schematics -- 20.4. Experimental and theoretical perspectives -- 20.5. Interference for N slits

21. Quantum entanglement probability amplitudes and Bell's theorem -- 21.1. Introduction -- 21.2. Probability amplitudes -- 21.3. Quantum polarization -- 21.4. Quantum probabilities and Bell's theorem -- 21.5. Example -- 21.6. Discussion

22. Cryptography via quantum entanglement -- 22.1. Introduction -- 22.2. Measurement protocol -- 22.3. Experiments

23. Quantum entanglement and teleportation -- 23.1. Introduction -- 23.2. The mechanics of teleportation -- 23.3. Technology

24. Quantum entanglement and quantum computing -- 24.1. Introduction -- 24.2. Entropy -- 24.3. Qbits -- 24.4. Quantum entanglement and Pauli matrices -- 24.5. Pauli matrices and quantum entanglement -- 24.6. Quantum gates -- 24.7. The Hadamard m

25. Space-to-space and space-to-Earth communications via quantum entanglement -- 25.1. Introduction -- 25.2. Space-to-space configurations -- 25.3. The space-to-Earth experiment -- 25.4. Further horizons

26. Space-to-space quantum interferometric communications : an alternative to quantum entanglement communications? -- 26.1. Introduction -- 26.2. The generalized N-slit quantum interference equations -- 26.3. The generation and transmission of i

27. Quanta pair sources for quantum entanglement experiments -- 27.1. Introduction -- 27.2. Positron-electron annihilation -- 27.3. Atomic Ca emission -- 27.4. Type I SPDC -- 27.5. Type II SPDC -- 27.6. Further horizons

28. More on quantum entanglement -- 28.1. Introduction -- 28.2. Consequences of the EPR paper -- 28.3. Hidden variable theories -- 28.4. The perspectives of EPR and Schr�odinger on quantum entanglement -- 28.5. Indistinguishability and Dirac

29. On the interpretation of quantum mechanics -- 29.1. Introduction -- 29.2. Quantum critical -- 29.3. Pragmatic perspective -- 29.4. Fundamental principles -- 29.5. The Dirac-Feynman-Lamb doctrine -- 29.6. The importance of the probability amp

Quantum entanglement (QE) is undoubtedly one of the most, if not the most, mysterious and yet most promising subjects of current physics. With applications in cryptographic space-to-space, space-to-earth, and fibre communications, in addition to

Research students, optical engineers, communication, cryptography specialist, physicists not specialized in Dirac's quantum mechanics.

Also available in print.

Mode of access: World Wide Web.

System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.

F.J. Duarte is an award-winning laser physicist who is a Fellow of the Australian Institute of Physics, and the Optical Society. As an expert in the field of narrow-linewidth tuneable lasers and their applications, Duarte has a vast knowledge an

Title from PDF title page (viewed on November 18, 2019).