Energy density functional methods for atomic nuclei / edited by Nicolas Schunck.
Material type:
Item type | Current library | Collection | Call number | Copy number | Status | Date due | Barcode |
---|---|---|---|---|---|---|---|
E-Books | MEF eKitap Kütüphanesi | IOP Science eBook - EBA | QC793.3.S8 E544 2019eb (Browse shelf (Opens below)) | Available | IOP_20210093 |
Browsing MEF eKitap Kütüphanesi shelves Close shelf browser (Hides shelf browser)
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
QC793.2 .D867 2018eb Particle physics / | QC793.2 .K374 2019eb Experimental particle physics : understanding the measurements and searches at the Large Hadron Collider / | QC793.3.B4 B477 2018eb A practical introduction to beam physics and particle accelerators / | QC793.3.S8 E544 2019eb Energy density functional methods for atomic nuclei / | QC793.5.M422 G653 2019eb B factories / | QC793.5.N42 D476 2019eb A modern introduction to neutrino physics / | QC794.6.S85 Y476 2018eb Matrix models of string theory / |
"Version: 20190101"--Title page verso.
Includes bibliographical references.
1. Non-relativistic energy density functionals -- 1.1. Introduction -- 1.2. Energy density functional kernels -- 1.3. Pairing and Coulomb functionals
2. Covariant energy density functionals -- 2.1. Relativistic description of quantum systems -- 2.2. Symmetry properties of QCD -- 2.3. Effective Lagrangians for nuclear systems -- 2.4. Phenomenological Lagrangians -- 2.5. Derivation of the covar
3. Single-reference and multi-reference formulations -- 3.1. Single-reference implementation of nuclear energy density functionals -- 3.2. Multi-reference implementation of nuclear energy density functionals
4. Time-dependent density functional theory -- 4.1. Time evolution equations -- 4.2. Role of pairing correlations in nuclear dynamics -- 4.3. Local DFT for superfluids -- 4.4. Validation of the TDSLDA : the unitary Fermi gas -- 4.5. Symmetry-bre
5. Small-amplitude collective motion -- 5.1. RPA with a Hamiltonian -- 5.2. RPA in density functional theory -- 5.3. Sum rules -- 5.4. Pairing correlations and QRPA formalism -- 5.5. Charge-changing QRPA
6. Large-amplitude collective motion -- 6.1. Collective subspace -- 6.2. Adiabatic time-dependent Hartree-Fock theory -- 6.3. Adiabatic self-consistent collective coordinate method -- 6.4. Gaussian overlap approximation of the GCM
7. Finite temperature -- 7.1. A reminder of statistical quantum mechanics -- 7.2. Finite-temperature Hartree-Fock theory -- 7.3. Finite-temperature Hartree-Fock-Bogoliubov theory -- 7.4. Finite-temperature RPA -- 7.5. Beyond mean field
8. Numerical implementations -- 8.1. Configuration space and basis expansions -- 8.2. Lattice techniques -- 8.3. The self-consistent loop -- 8.4. Time-evolution algorithms
9. Calibration of energy functionals -- 9.1. Parameters of energy functionals -- 9.2. Physical observables -- 9.3. Uncertainties of EDF parameters -- 9.4. Propagation of theoretical uncertainties.
Energy density functional (EDF) approaches have become over the past twenty years a powerful framework to study the structure and reactions of atomic nuclei. This book gives an updated presentation of non-relativistic and covariant energy functi
PhD students, postdocs and research staff specializing in nuclear theory.
Also available in print.
Mode of access: World Wide Web.
System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.
Nicolas Schunck received his PhD in theoretical nuclear physics from the University of Strasbourg and he is currently a research scientist at Lawrence Livermore National Laboratory. His work is centred on the development and applications of comp
Title from PDF title page (viewed on February 4, 2019).