Energy density functional methods for atomic nuclei / edited by Nicolas Schunck. - 1 online resource (various pagings) : illustrations (some color). - [IOP release 6] IOP expanding physics, 2053-2563 . - IOP (Series). Release 6. IOP expanding physics. .

"Version: 20190101"--Title page verso.

Includes bibliographical references.

1. Non-relativistic energy density functionals -- 1.1. Introduction -- 1.2. Energy density functional kernels -- 1.3. Pairing and Coulomb functionals 2. Covariant energy density functionals -- 2.1. Relativistic description of quantum systems -- 2.2. Symmetry properties of QCD -- 2.3. Effective Lagrangians for nuclear systems -- 2.4. Phenomenological Lagrangians -- 2.5. Derivation of the covar 3. Single-reference and multi-reference formulations -- 3.1. Single-reference implementation of nuclear energy density functionals -- 3.2. Multi-reference implementation of nuclear energy density functionals 4. Time-dependent density functional theory -- 4.1. Time evolution equations -- 4.2. Role of pairing correlations in nuclear dynamics -- 4.3. Local DFT for superfluids -- 4.4. Validation of the TDSLDA : the unitary Fermi gas -- 4.5. Symmetry-bre 5. Small-amplitude collective motion -- 5.1. RPA with a Hamiltonian -- 5.2. RPA in density functional theory -- 5.3. Sum rules -- 5.4. Pairing correlations and QRPA formalism -- 5.5. Charge-changing QRPA 6. Large-amplitude collective motion -- 6.1. Collective subspace -- 6.2. Adiabatic time-dependent Hartree-Fock theory -- 6.3. Adiabatic self-consistent collective coordinate method -- 6.4. Gaussian overlap approximation of the GCM 7. Finite temperature -- 7.1. A reminder of statistical quantum mechanics -- 7.2. Finite-temperature Hartree-Fock theory -- 7.3. Finite-temperature Hartree-Fock-Bogoliubov theory -- 7.4. Finite-temperature RPA -- 7.5. Beyond mean field 8. Numerical implementations -- 8.1. Configuration space and basis expansions -- 8.2. Lattice techniques -- 8.3. The self-consistent loop -- 8.4. Time-evolution algorithms 9. Calibration of energy functionals -- 9.1. Parameters of energy functionals -- 9.2. Physical observables -- 9.3. Uncertainties of EDF parameters -- 9.4. Propagation of theoretical uncertainties.

Energy density functional (EDF) approaches have become over the past twenty years a powerful framework to study the structure and reactions of atomic nuclei. This book gives an updated presentation of non-relativistic and covariant energy functi

PhD students, postdocs and research staff specializing in nuclear theory.




Mode of access: World Wide Web.
System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.


Nicolas Schunck received his PhD in theoretical nuclear physics from the University of Strasbourg and he is currently a research scientist at Lawrence Livermore National Laboratory. His work is centred on the development and applications of comp

9780750314220 9780750314244

10.1088/2053-2563/aae0ed doi


Nuclear structure.
Nuclear reactions.
Density functionals.
Nuclear physics.
SCIENCE / Physics / Nuclear.

QC793.3.S8 / E544 2019eb

539.7/4